
Hierarchical Map Building and Planning based on Graph
Partitioning ∗

Zoran Zivkovic and Bram Bakker and Ben Kröse
Intelligent Systems Laboratory Amsterdam

University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

{zivkovic,bram,krose}@science.uva.nl

Abstract— Mobile robot localization and navigation requires a
map - the robot’s internal representation of the environment. A
common problem is that path planning becomes very inefficient
for large maps. In this paper we address the problem of
segmenting a base-level map in order to construct a higher-
level representation of the space which can be used for more
efficient planning. We represent the base-level map as a graph
for both geometric and appearance based space representations.
Then we use a graph partitioning method to cluster nodes of
the base-level map and in this way construct a high-level map,
which is also a graph. We apply a hierarchical path planning
method for stochastic tasks based on Markov Decision Processes
(MDPs) and investigate the effect of choosing different numbers
of clusters.

Index Terms— mobile robots, hierarchical map building, topo-
logical map, path planning

I. INTRODUCTION

Mobile robot localization and navigation requires an in-
ternal representation of the environment. Several researchers
(e.g. [12], [18]) have proposed a hierarchy of maps to
represent large environments at different resolutions, or levels
of abstraction, simultaneously.

Typically two levels of abstraction are used: a base-level
map and a higher-level “topological” map. The higher-level,
abstract map may be used to represent larger areas of a
building, for instance as a graph connecting rooms and
corridors, without representing the exact spatial relationship
of individual locations within rooms and corridors. Such a
high-level map is used to construct abstract plans to navigate
from one room to another, without having to worry about
exact spatial details within the rooms. The base-level map can
be used for precise navigation from one room to the next and
to target locations within an individual room, without having
to worry about other rooms. In this paper we address the
problem of segmenting the base-level map so as to arrive at
the higher level map.

∗The work described in this paper was conducted within the EU FP6-
002020 COGNIRON (”The Cognitive Companion”) project.

There are various ways of segmenting base-level maps.
In human augmented mapping, a human supervisor indicates
which places are to serve as nodes in the graph [1]. Geo-
metrical methods such as generalized Voronoi graphs [6] are
used to segment the geometric space representations. It is
also possible to use sensory data directly for the creation of
a higher level map. In [16], [10], [21] a set of images of the
robot’s environment is grouped based on the presence of a
number of automatically extracted landmarks.

In this paper we describe an alternative algorithm for
segmenting the base-level map similar to [21]. We start from
a graph representation of the base-level map. The graph con-
sists of nodes that represent admissible space locations and
the links between nodes represent the admissible transitions
between the locations. In [21] images are used to construct
the graph of an appearance based representation. We extend
[21] by showing how some common space representations
used in robotics are readily represented in this way.

Segmentation of the base level map then becomes a
problem of graph partitioning. We use the ”normalized graph
cut” criterion [9] and its efficient approximate solution [9],
[15] to perform the segmentation. We apply a hierarchical
path planning algorithm for stochastic tasks based on Markov
Decision Processes (MDPs) [2] and investigate the effect of
choosing different numbers of clusters.

The paper is organized as follows. In Section 2 we describe
simple methods for generating base-level graphs for different
space representations. Section 3 describes the graph-theoretic
segmentation method for extracting a higher level conceptual
map. The algorithm from [2] for hierarchical path planning
is presented briefly in Section 3. Our experimental results
in Section 4 show the results of segmenting different real
space representations into varying numbers of segments, and
demonstrate the efficiency of the hierarchical path planning.

II. BASE-LEVEL GRAPH

Throughout the paper we will denote by (S0,W 0) the
graph that describes the base-level map. Here S0 is the set of

IEEE International Conference on Robotics and Automation, 2006 Page: 1

graph nodes. In our examples the graph nodes will correspond
to the admissible areas of space. Let q0 be the number
of nodes. The q0 × q0 matrix W 0 is called the ”similarity
matrix”. For each pair of nodes i,jε[1, ..., q0] the value of
the element W 0

ij from the symmetric matrix W 0 defines the
similarity of the nodes. In our examples W 0

ij = 1 typically
denotes that the transition is possible between the nodes and
W 0

ij = 0 that it is not possible.
There are two general approaches used to construct the

base-level map in robotics: geometric and appearance based.
In both cases it is straightforward to represent the base-level
map as a graph.

A. Geometric base-level graph

In the geometric approach the map is represented as a 2D
geometric model of the workspace of the robot, indicating
admissible and non-admissible areas [18]. The admissible
and non-admissible areas are often represented as a grid,
yielding an “occupancy grid” representation. A simple graph
representation for a grid-based model is commonly obtained
in the following way [18]. Grid cells that correspond to the
admissible areas are considered as the nodes of the base-level
graph. Transitions between neighboring admissible cells are
the edges that connect the nodes of the graph. This is also
a natural and straightforward representation to be used for
path planning, where the graph nodes are regarded as the
possible states of the robot and the transitions as possible
actions given a current state (see Section IV).

In Figure 1a we present an occupancy grid representation
of an office environment obtained from real data [18]. The
black pixels of the presented image correspond to non-
occupied cells. Each black pixel becomes a node of the
graph (S0,W 0) . This gives q0 = 11773 graph nodes (states)
for this map. For each pair of nodes i,j that correspond to
neighboring cells the value of the element W 0

ij from W 0 is set
to the inverse of the distance between the cells. For example,
a black pixel form Figure 1a surrounded by only black pixels
represents a graph node connected to its 8 neighboring nodes.
For the cell neighbors in the horizontal and vertical direction
W 0

ij = 1, and in the diagonal direction W 0

ij = 1/
√

(2).
All other elements of W 0 are set to zero. Note that there
are many ways to extend this representation. For example
the occupancy grid representations are often not binary but
contain some measure of uncertainty about the cells and this
information could be included in the graph. However, this is
beyond the scope of this paper.

B. Appearance based base-level graph

A second approach used to construct base-level maps is
appearance-based representations. These are representations
where the environment is not modelled geometrically, but as

an ‘appearance map’ that consists of a collection of sensor
readings obtained at various poses [14], [8], [11]. Here the
various poses can be regarded as the nodes of the low-
level graph and the admissible transitions as the graph edges.
Again this is a natural representation for path planning using
an appearance based representation.

As an example we take the map from [21] where the
appearance based representation consists of a set of omnidi-
rectional images taken at different locations. As an example
in Figure 1b we illustrate a set of q0 = 234 locations where
the images were taken in an office environment. Note that
the ground-truth locations are used only for presenting the
results, they are not used by our methods. As the result from
q0 images we get a graph (S0,W 0) with q0 nodes. For each
pair of nodes i,j the value of the element W 0

ij defines the
similarity of the nodes to be equal to 1 if and only if it is
possible to perform 3D reconstruction of the local space from
the two images corresponding to the nodes. Otherwise there
is no link between the nodes and W 0

ij = 0. For localization
and navigation the robot can use the same 3D reconstruction
algorithm as the one used to define the edges of the graph.
If there is a non-zero edge in the graph this also means that
if the robot is at one of the connected nodes (corresponding
to one image), it can determine the relative location of the
other node (corresponding to the other image). If there are no
obstacles in between, the robot can directly navigate from one
node to the other (as, e.g., in [17]). If there are obstacles, one
could rely, for example, on an additional reactive algorithm
for obstacle avoidance using range sensors. As in [21], we
use the standard 3D reconstruction 8-point algorithm [7] and
the Scale Invariant Feature Transform (SIFT) features [13]
as the automatically detected landmarks in the images.

In this way, a graph is constructed from the data set. One
such graph is presented in Figure 3. This graph contains, in
a natural way, information about how the space in an indoor
environment is separated by walls and other barriers. Images
from a convex space, for example a room, will have many
connections between them, and just a few connections to
images from another convex space, for example a corridor,
that is connected with the room via a narrow passage, for
example a door.

As with geometric representations, there are various ways
to define the similarity metric for W 0. The simple metric we
use is directly related to the robot navigation task. Additional
information can be associated with the edges of the graph,
e.g., Euclidean distance between the nodes if metric positions
of the images are known or reconstructed, some measure of
quality and robustness of the 3D reconstruction given a pair
of images, etc.

IEEE International Conference on Robotics and Automation, 2006 Page: 2

a) a geometric space representation - a binary occupancy
grid, the black pixels denote non-occupied space.

b) an illustration of an appearance based map - an
omnidirectional image was taken at each location denoted

by a dot.
Fig. 1. Example base level 2D maps. Bird’s eye view of two office
environments. For the appearance based map we show the ground floor
plan to give some idea about the environment layout.

III. CONSTRUCTING HIGHER LEVEL TOPOLOGICAL
MAPS USING GRAPH CUTS

The central idea behind our method to construct the higher
level map is to cut the graph (S0,W 0) representing the
lower level map (described above) into q1 separate subgraphs
{(S0

1
,W 0

1
)..., (S0

q1 ,W 0

q1)}. Each of the clusters becomes a
higher level node (state) in the higher level graph (S1,W 1).

A. Normalized graph cut

We will start by introducing some graph-theoretic terms.
The degree of the i-th node of a graph (S,W) is defined
as the sum of all the edges that start from that node: di =
∑

j Wij . For nodes Sj (where Sj is a subset of S), volume is
defined as vol(Sj) =

∑

i di. vol(Sj) describes the ”strength”
of the interconnections within the subset Sj . A subgraph
(Sj ,Wj) can be ”cut out” from the graph (S,W) by cutting
a number of edges. The sum of the values of the edges that

are cut is called a graph cut:

cut(Sj ,S\Sj) =
∑

iεSj ,jεS\Sj

Wij (1)

where S\Sj denotes the set of all nodes except the ones
from Sj . One may cut the base level graph into q1 clusters
by minimizing the number of cut edges:

q1

∑

j

cut(Sj ,S\Sj). (2)

This would mean that the graph is cut at the weakly con-
nected places, which in our case would usually correspond
to natural segmentation at doors between the rooms or other
narrow passages. However, such segmentation criteria often
leads to undesirable results. For example, if there is an
isolated node connected to the rest of the graph by only one
link, then (2) will be in favor of cutting only this link. To
avoid such artifacts we use a normalized version:

q1

∑

j

cut(Sj ,S\Sj)

vol(Sj)
. (3)

Minimizing this criterion means cutting a minimal number
of connections between the subsets but also choosing larger
subsets with strong connections within the subsets. This
criterion naturally groups together convex areas, like a room,
and makes cuts between areas that are weakly connected.

B. Approximate solution - spectral clustering

For completeness of the text we briefly sketch a well-
behaved spectral clustering algorithm from [15] that leads
to a good approximate solution of our criteria:

1) Define D to be a diagonal matrix of node degrees
Dii = di and construct the normalized similarity
matrix L = D−1/2W 0D−1/2.

2) Find x1, ..., xq1 the q1 largest eigenvectors of L and
form the matrix X = [x1, ..., xq1] ∈ Rq0×q1

.
3) Renormalize rows of X to have unit length Xij ←

Xij/(
∑

j X2

ij)
1/2.

4) Treat each row of X as a point inRq1

and cluster using
for example the k-means algorithm.

5) The i-th node from S0 is assigned to cluster j if and
only if the row i of the matrix X was assigned to the
cluster j.

Instead of the k-means step in [19] a more principled but
more complex approach is used, following [20] where a good
initial start for the k-means clustering is proposed. We tested
the mentioned algorithms, and in practice, for our type of
problems, they lead to similar solutions.

IEEE International Conference on Robotics and Automation, 2006 Page: 3

C. Quality of the segmentation

The quality of the segmentation can be assessed by
comparing to the ideal case where the clusters are highly
separated. In such a case the normalized similarity matrix L
becomes block diagonal. If there are q1 clusters present then
there will be q1 blocks and the first q1 eigen values will be
equal to 1. In the non-ideal case eigenvalues will be less then
one and decreasing. If q1 is the ”optimal” number of clusters
then we expect a sudden drop for the eigenvalue q1 + 1.
This is a common heuristic [15] to decide the quality of a
segmentation for a given q1 but in practice highly unreliable
and lacks theoretical justification [20].

Another, more robust heuristic [20] is based on the fol-
lowing observation. In the ideal case the eigenvectors will
correspond to the matrix blocks having all other values
corresponding to other matrix blocks equal to zero. This
means that for every row of the matrix X (described above)
that contains the eigenvectors there will be at most one non
zero entry. So we could define for example the following
quality measure:

Quality =

q0

∑

1

q1

∑

1

X2

ij

maxjX2

ij

− 1. (4)

Note that in the ideal case the eigenvectors correspond to a
repeated eigenvalue and it could be that the eigenvectors we
get as a solution span the same subspace but are rotated by
an unknown rotation R. Therefore in order to use the quality
measure (4) we need to find this rotation and transform X
to its canonical form X̂ ← RX . See [20] for details.

IV. HIERARCHICAL PATH PLANNING FOR STOCHASTIC
TASKS

For path planning, robot maps are commonly formalized as
Markov Decision Processes (MDPs), such that the planning
task becomes a dynamic programming problem [4], [5]. This
formalization is appropriate for such robot planning tasks
because it is efficient, because it can take into account noise
in the execution of actions and uncertain state transitions,
and because the resulting policies are optimal in the sense
that they lead to lowest expected cost (e.g. distance trav-
elled). Furthermore, it allows for straightforward inclusion
of cost factors other than distance travelled, such as energy
consumption and obstacle avoidance.

A. MDPs

An MDP M is a tuple 〈S,A, T ,R〉. S is a finite set of
states s, some of which may be terminal states. The states are
the nodes of the graph (S,W). The A is a finite set of actions
a, whose availability may depend on the state. T : S ×A×
S → [0, 1] defines the state transition function that describes

s

g

Fig. 2. Illustration of a case when the hierarchical planning method may
lead to longer paths from a start state s to a target state g. The base-level
graph nodes are grouped into three higher level nodes indicated by the
larger circles. The solid line is the optimal path. The dashed line is the path
computed by the hierarchical method, which optimally goes to the bottom
high-level state, and within the bottom high-level state optimally goes to the
target state.

the probability p(s′|s, a) that the system will move from state
s to s′ after performing the action a ∈ A. The actions for state
s in our case are the possible transitions for this graph node
defined by the graph (S,W). In the simplest case we set the
probability of each transition to 1 or 0. R : S ×A×S → R
defines the expected immediate real-valued reward r(s, a, s′)
when action a is taken in state s and the transition to s′ is
made. For path planning r(s, a, s′) can simply be negative
value of the distance travelled between s and s′, defined by
the values from the graph similarity matrix W .

The objective of planning in MDPs is to determine a policy
π : S → A which maximizes the total (future, cumulative,
possibly discounted) reward, or minimizes the total cost.
Planning is normally done by estimating a value function,
which represents expected total reward or cost obtainable
from each state, through dynamic programming methods [4].

B. Hierarchical dynamic programming

The standard MDP framework can be extended by adding
hierarchical structure [2]. We define two types of MDPs
making up a complete hierarchical system. They are both
derived from a given standard, flat MDP. The first type,
Mn, a tuple 〈Sn,An, T n,Rn〉, represents the given MDP
at a particular level of abstraction. n indexes the level in the
hierarchy, N is the number of levels in the hierarchy (in our
case N = 2). The base-level MDP is M0 corresponding to
the base level graph (S0,W 0).Mn for n ≥ 1 is constructed
from Mn−1 by segmenting the states in Sn−1. In our case,
this is performed by segmenting the base-level graph using
the method described above. The state transition function T n

and reward function Rn are estimated by averaging over the
corresponding lower level state transitions and rewards (see
[2] for details). The second type of MDPs making up the
complete hierarchical system is defined only for n ≥ 1 and
is denoted by Mn−1

sn
k

,sn
m

. Mn−1

sn
k

,sn
m

is an MDP that represents

IEEE International Conference on Robotics and Automation, 2006 Page: 4

the lower level (n− 1) task of navigating from higher level
(n) state sn

k to state sn
m. Its states, state transition function,

and reward function are straightforward subsets of the lower-
level MDP Mn−1.

This hierarchy of MDPs allows us to efficiently compute
a value function/policy for the entire state space to every
possible target state of the original, flat MDP M0. For a
specific low-level target state, the higher level target states
in Mn for all 0 < n < N are determined in which this
low-level target state lies. At their own levels, they become
terminal states. Next, the path planning task is performed
from the highest level down, using dynamic programming
at each level. State transitions from sn

k to sn
m dictated by a

value function at level n are modelled by the appropriate
Mn−1

sn
k

,sn
m

and subsequently planned, again using dynamic
programming. In this way, the complete planning task to
a low-level target state is solved recursively. Algorithm 1
provides pseudocode for the complete hierarchical planning
method.

[18] proposes a planning method that is similar to this
hierarchical dynamic programming method. However, that
method was specifically designed for metric-topological maps
and deterministic tasks, and it assumes that topological state
transitions always have the same cost. It was also designed
to do most of the planning off-line. In contrast, this method
was designed for more diverse, deterministic and stochastic
hierarchical maps with an arbitrary number of levels in
the hierarchy, and it computes higher level state transition
probabilities and costs in a more principled way. Furthermore,
it was designed for online use, with plans being generated
only when needed.

In contrast to standard, “flat” dynamic programming using
only the base-level MDP, the hierarchical algorithm can,
when paths must be planned to multiple target states, in many
cases reuse value functions computed for earlier target states.
A second advantage over standard flat dynamic programming
is that the state spaces for individual value functions at all
levels are reduced, leading to fewer operations per sweep
through the state set and faster convergence. A disadvantage
is that in some cases the system may converge to somewhat
longer paths to target locations than standard flat dynamic
programming. This situation can arise because low-level
value functions which are optimal with respect to reaching the
next high-level state from the current high-level state are not
always optimal with respect to reaching the final target state
(see Figure 2). However, the idea of using the normalized
graph cut algorithm is that this problem is minimized because
that algorithm segments the base-level map at narrow pas-
sages. This means that hierarchical planning cannot do much
worse than flat planning, because both must pass through this
narrow passage.

s0

g ← new target state for M0

for all 0 < n < N do
sn

g ← determine target state for Mn

V N−1 ← Solve(MN−1, N − 1).

Function Solve(M, n):
while δ > ∆ (a tiny threshold) do

for all s ∈ S do
Vnew ← maxa

∑

s′ p(s′|s, a)[r(s, a, s′) + V (s′)]
if |Vnew − V (s)| > δ then

δ ← |Vnew − V (s)|
V (s)← Vnew

if n > 0 then
for all s ∈ S do

if s = sn
g then

if V n−1

sn
g ,sn−1

g

does not exist then

Construct Mn−1

sn
g ,sn−1

g

from Mn−1

V n−1

sn
g ,sn−1

g

← Solve(Mn−1

sn
g ,sn−1

g

, n− 1)
else

s∗ ← arg maxa

∑

s′ p(s′|s, a)[r(s, a, s′) + V (s′)]
if V n−1

s,s∗ does not exist then
Construct Mn−1

s,s∗ from Mn−1

V n−1

s,s∗ ← Solve(Mn−1

s,s∗ , n− 1)
Return V

Algorithm 1: Pseudocode of hierarchical dynamic program-
ming algorithm.

V. EXPERIMENTS

The experiments described here were designed to inves-
tigate the validity of the method to extract the higher level
map from the base-level map and to investigate the effect of
choosing different number of clusters on the path planning.

A. Appearance based map

We applied the graph cut clustering on the appearance
based map from Section 2 with 2, 5, 7, 10, and 15 clusters.
The graph and the clustering for 7 and 15 clusters are shown
in Figure 3. For the various numbers of clusters we use the
hierarchical value iteration method described above to com-
pute policies to 1000 randomly selected states. The results are
compared to flat value iteration performed on the flat, base-
level MDP M0. In Figure 3 we summarize the results. The
number of value updates until convergence and computation
time is significantly lower for the hierarchical method than
for the flat method (as expected; see the explanation above).
However, the average maximum likelihood path length for
the hierarchical method is 10% to 20% higher than the flat
method’s (optimal) value. This average loss with respect to

IEEE International Conference on Robotics and Automation, 2006 Page: 5

7 clusters

15 clusters

2 4 6 8 10 12 14
0

5

10

15

20

lo
ss

 (%
)

number of clusters

average loss in % with respect to the optimal path

2 4 6 8 10 12 14
0

20

40

60

va
lu

e
up

da
te

s
(%

)

number of clusters

average number of value function updates in % with respect to
the flat planning

2 4 6 8 10 12 14
0

20

40

60

tim
e

(%
)

number of clusters

average computation time in % with respect to the flat planning

Fig. 3. Examples of segmentation and results of planning for various
number of clusters for the appearance based graph. In the segmented graphs
the cut links are shown in gray. Some nodes along the cuts are also shown
in gray for better visibility.

the optimal path depends both on the number of clusters and
the structure of the base-level graph. The standard quality
measure (4) indicates 7 as the ”best” number of clusters
which leads to a reasonable compromise.

B. Occupancy grid map

The graph cut clustering method is applied to the oc-
cupancy grid from Section 2 with 5, 8, 10, 15, 19, 20,

30, and 50 clusters. The results comparing the hierarchical
planning method to the flat planning method are summarized
in Figure 4. The gains in computation time for this larger
map are huge while the average path length gets only slightly
worse than the optimal one computed using the flat planning.
The graph cut algorithm leads to good segmentations and
hierarchically computed paths close to optimal for the whole
range of number of clusters. A number of clusters of 20 or 30
seems to be a particularly good choice. The quality measure
(4) indicates 10 as the number of clusters which leads to
a ”natural” segmentation (see Figure 4). This number of
clusters leads again to a reasonable compromise for planning.

Voronoi graph based segmentation is a standard method
for segmenting occupancy grids. For our graph the Voronoi
segmentation leads to 19 clusters. Figure 4 shows the segmen-
tation for the Voronoi graph as well as the segmentation for
our method with the same number of clusters. Hierarchical
planning results indicate that our method leads to better
segmentation for planning (see Figure 4). The average loss
with respect to the optimal path is almost 3 times less and
the computation time is more than 2 times less for the same
number of clusters.

VI. CONCLUSIONS AND FUTURE WORK

We presented an algorithm for automatically generating
hierarchical maps. Base-level maps are represented as graphs,
and higher-level maps are derived from base-level maps
by graph partitioning, yielding another, smaller graph. Ex-
periments on real data show that meaningful higher level-
maps can be obtained and that planning can be made highly
efficient. The hierarchical maps lead to average paths close
to optimal for different number of clusters.

Different criteria lead to a different “optimal” number of
clusters. These criteria include intuitiveness of the resulting
higher level map, sparseness of the higher level map, op-
timality of the paths planned using the higher level map,
and computational cost of planning. The quality of clustering
criteria described in Section 3 yield intuitive, “natural” seg-
mentations. To minimize computation costs, segmentations
that have another number of clusters and that seem less
natural may have to be chosen.

The optimality of paths compared to flat planning depends
on structure of the graphs and the number of clusters in
a complex way. The “natural” segmentation indicated by
the quality of clustering criteria seems to usually give a
reasonable choice with respect to optimality of the paths.

Compared to the standard Voronoi-based approach, our
method for map segmentation is more general since it can
be applied also to maps such as appearance-based maps. Our
experiments indicate also that our segmentation method leads
to hierarchical planning with less computation time while

IEEE International Conference on Robotics and Automation, 2006 Page: 6

10 clusters - graph cut 19 clusters - graph cut Voronoi segmentation

10 20 30 40 50
0

2

4

6

8

10

Voronoi graph

lo
ss

 (%
)

number of clusters
10 20 30 40 50

0
5

10
15
20
25
30
35

Voronoi graph

va
lu

e
up

da
te

s
(%

)

number of clusters
10 20 30 40 50

0
5

10
15
20
25
30
35

Voronoi graph

tim
e

(%
)

number of clusters

average loss in % with respect to the
optimal path

average number of value function updates
in % with respect to the flat planning

average computation time in % with respect
to the flat planning

Fig. 4. Examples of segmentation and results of planning for various number of clusters for the occupancy grid. Above we present segmentation into 10
clusters chosen as the ”best” by the quality measure from Section 3. We present the standard Voronoi segmentation and graph cut segmentation for the same
number of 19 clusters. The results for the hierarchical path planning using the Voronoi-based segmentation are indicated by the cross below.

the average loss in optimality of the paths is better as well.
Furthermore, the new method gives also more design choices.
For example the similarity matrix that describes the base-
level graph can be defined in various ways, different types of
information can be included as discussed in Section 2, and
different numbers of clusters can be chosen. Finally, extend-
ing the new representation to semi-supervised segmentation
[3] and online, real-time segmentation may also be possible
and we will focus on this in future work.

REFERENCES

[1] P. Althaus, H. Ishiguro, T. Kanda, T. Miyashita, and H. I. Christensen.
Navigation for human-robot interaction tasks. In In Proc. IEEE Int.
Conf. on Robotics and Automation, 2004.

[2] B. Bakker, Z. Zivkovic, and B. Kröse. Hierarchical dynamic program-
ming for robot path planning. In In Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2005.

[3] M. Belkin and P. Niyogi. Semi-supervised learning on riemannian
manifolds. Machine Learning, Special Issue on Clustering, 56:209–
239, 2004.

[4] D. P. Bertsekas. Dynamic programming and optimal control. Athena
Scientific, Belmont, MA, 1995.

[5] J. M. Buhmann, W. Burgard, A. B. Cremers, D. Fox, T. Hofmann,
F. E. Schneider, J. Strikos, and S. Thrun. The mobile robot RHINO.
AI Magazine, 16(2):31–38, 1995.

[6] H. Choset and K. Nagatani. Topological simultaneous localisation and
mapping: Towards exact localisation without explicit localisation. IEEE
Transactions on Robotics and Automation, 17(2):125–137, 2001.

[7] R. Hartley and A. Zisserman. Multiple view geometry in computer
vision, second edition. Cambridge University Press, 2003.

[8] S. D. Jones and J. L. Crowley. Appearance based processes for visual
navigation. In Proc. IEEE Int. Conf. on Intell. Robots and Syst., 1997.

[9] J.Shi and J.Malik. Normalized cuts and image segmentation. IEEE
Trans. Pattern Anlysis and Machine Intelligence, 22(8):888–904, 2000.

[10] J. Kosecka and F. Li. Vision based markov localization. In Proc. IEEE
Robotics and Automation Conference, 2004.

[11] B.J.A. Krose, N. Vlassis, R. Bunschoten, and Y. Motomura. A
probabilistic model for appearance-based robot localization. Image
and Vision Computing, 6(19):381–391, 2001.

[12] B. J. Kuipers. Representing knowledge of large-scale space. Technical
Report TR-418, MIT Artificial Intelligence Laboratory, July 1977.

[13] D.G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. Journal of Computer Vision, 2(60):91–110, 2004.

[14] S. Nayar, S. Nene, and H. Murase. Subspace methods for robot vision.
CUCS-06-95, Technical Report, Department of Computer Science,
Columbia University, 1995.

[15] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and
an algorithm. In Proc. Advances in Neural Information Processing
Systems 14, 2001.

[16] P.Lamon, A.Tapus, E.Glauser, N.Tomatis, and R.Siegwart. Environ-
mental modeling with fingerprint sequences for topological global
localization. In Proc. IEEE/RSJ Int. Conf. on Intell. Robots and
Systems, 2003.

[17] I.Shimshoni R.Basri, E.Rivlin. Visual homing: Surfing on the epipoles.
Int. Journal of Computer Vision, 33(2):117–137, 1999.

[18] S. Thrun. Learning metric-topological maps for indoor mobile robot
navigation. Artificial Intelligence, 99(1):21–71, 1998.

[19] S. X. Yu and J. Shi. Multiclass spectral clustering. In Proc. Int. Conf.
on Computer Vision, pages 11–17, 2003.

[20] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In
Proc. Advances in Neural Information Processing Systems, 2004.

[21] Z. Zivkovic, B. Bakker, and B. Kröse. Hierarchical map building using
visual landmarks and geometric constraints. In In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2005.

IEEE International Conference on Robotics and Automation, 2006 Page: 7

