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Abstract

We present a framework for real-time tracking of complex non-rigid objects. The
shape of the object is approximated by an ellipse and its appearance by histogram
based features derived from local image properties. We use an efficient local search
scheme (based on mean-shift) to find the image region with a histogram most similar
to the histogram of the tracked object. The efficient search can be integrated into a
Bayesian filtering scheme. We compare a number of schemes: the Kalman filter, the
mixture Kalman filter and other sequential importance sampling (particle filtering)
techniques.
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1 Introduction

In broad terms, Bayesian approaches to object tracking rely on two main
components: a transition (object motion) model, that describes kinematic con-
strains on the evolution of the objects state, and an observation model that
defines the likelihood of the object configuration given current measurements.
In principle, once a model is decided upon, tracking boils down to posterior
inference that can be carried out recursively using some Bayesian filtering
scheme [1,8]. In this paper we will address the following issues that are often
raised in the context of visual object tracking.

The first issue is the challenging problem of defining a realistic yet practical
observation model for non-rigid objects in vision based tracking. Some ap-
proaches explicitly model the relation between the state of the object and the
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appearance of each pixel from the image region occupied by the tracked ob-
ject: for example models tailored specifically for humans [9] or more generic
models to be learned from data [17,16]. Contour based algorithms [6,13] fo-
cus on detailed modelling but only of the outer contour shape of the tracked
object. An alternative line of approach employs appearance models robust
to deformations: for example the histogram-based representation [22] or ex-
tensions [3,11,23,12,21]. In this paper we follow [7] where the shape of the
tracked object is approximated by an ellipse and the appearance within the
ellipse is described by a histogram based model. The obvious advantage of
such a model is its simplicity and general applicability. Another advantage,
that made this observation model rather popular, is the existence of efficient
local search schemes to find the image region with a histogram most similar
to the histogram of the tracked object [10,7,19,24]. We will use the natural
extension of the mean-shift procedure from [24] that efficiently solves previous
problems with sudden object scale and shape changes.

The second issue is regarding the intractability of exact Bayesian filtering due
to the complex observation model: it is not obvious how to choose among many
possible approximate techniques. This paper analyzes and compares a range of
approximate Bayesian tracking schemes listed below. First, the efficient local
search [24] is used to find the likely object configuration, the complex obser-
vation model is summarized by local Gaussian (Laplace) approximation and
the Kalman filter is used as in [7]. Often there are several likely object config-
urations. The local search can be used to find these configurations by starting
the search from various random starting points. The observation model is then
approximated by a Gaussian mixture [2] and the mixture Kalman filter [4] can
be used. Another approach is is using a sampling scheme. While the bootstrap
particle filter is an obvious candidate [13,18], it makes not use of the search
scheme. In this paper, we illustrate how the Gaussian mixture approxima-
tion of the observation model obtained using the search scheme can be used
within a sampling scheme as a proposal distribution. In this way, we obtain
the computational advantages without compromising theoretical convergence
properties of a particle filter [8].

The paper is organized as follows: In Section 2, we introduce the observation
model and the efficient local search scheme based on the results from [24].
The similarity between a histogram from an elliptical image region with the
histogram of the tracked object is formulated as a probability model. This
presents an obvious generalization of similarity measures that have been used
previously [7,11,24], but nevertheless allows us to combine features derived
from different image modalities. In Section 3, we discuss how the search pro-
cedure can be used within a range of Bayesian tracking schemes. Experiments
are given in Section 4.
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2 Observation model

In this section we define a probability model that relates the state st of an
object at time t with the video frame It observed at time t. Throughout the
paper the index t = 1 . . . T denotes the discrete time (frame) index. Occasion-
ally, when the time index is not relevant we will omit it. We will denote the
value at the i’th pixel by It(xi). Here, xi denotes the image pixel location.

2.1 Object shape

Suppose we are given an arbitrary shape S in an image specified by a set of
pixel locations xi, i.e., S ≡ {xi : i’th pixel belongs to the object}. We approx-
imate the shape of a non-rigid object in an image by its first and second order
moments – an elliptical region we denote by Se. The original shape S may
have been initially selected manually or detected using some other algorithm,
for example background subtraction [20]. If there are NS pixels that belong
to the object of interest, we define

θ ≡ 1

NS

∑

xi∈S

xi and V ≡ 1

NS

∑

xi∈S

(xi − θ)(xi − θ)T . (1)

Here, the first moment vector θ denotes the center of the object in the im-
age I. The matrix of second moments V , that encodes scale and orientation,
is symmetric and positive definite. Consequently, the θ and V describe an
arbitrary elliptical region. We use here the following parametrization s ≡
[θT , scalex, scaley, skew]T where scalex and scaley are the scaling and skew
is the skew transformation obtained from from V using the unique Cholesky

factorization V =





scalex skew

0 scaley





T 



scalex skew

0 scaley



. Occasionally, by a slight

abuse of notation we will refer to the state s as s = (θ, V ) to explicitly high-
light the dependence on θ and V . Similarly, Se(s) will denote the elliptical
shape defined by s.

2.2 Object appearance using histogram based features

The appearance of an object is described by a set of M scalar features r1, ..., rM

that are extracted from the local area of an image I defined by Se(s). We view
each rm as a “bin” of a histogram. Let P be the set of pixel values I(xi), for
example P = [0, 255]3 for RGB images. We define a quantization function
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b : P→ {1 . . . M}, that associates with each observed pixel value a particular
bin index m.

The value rm of the m-th bin is calculated from the elliptical image region
Se(s = (θ, V )) using:

rm(I, s) ≡ |V |γ/2
∑

xi∈Se(s)

N (xi; θ, V ) δ [b(I(xi))−m] , (2)

where δ is the Kronecker delta function. The kernel function N is chosen such
that pixels in the middle of the object have higher weights than pixels at
the borders of the objects. A natural choice is a Gaussian kernel defined by:
N (x; θ, V ) = |2πV |− 1

2 exp
(

−1
2
(x− θ)T V −1(x− θ)

)

. The prefactor |V |γ/2 in

(2) discounts for the fact that in practice we use only the Ns pixels from a
finite neighborhood of the kernel center. We disregard samples further than
2.5-sigma and it is easy to show that one should use γ ≈ 0.1 in this case. The
smooth kernel function will suppress the influence of the (arguably less reli-
able) pixels near the borders. But more importantly it enables a fast gradient
based search described at the end of this section.

2.3 Probabilistic observation model

We introduce for each feature rm a probability density function p(rm(I, s)),
the particular form to be defined later. We assume that the features rm are
independent. Furthermore, we assume that each feature rm is uninformative if
computed outside the region defined by s. The log-likelihood of s in an image
I can be defined by:

logL(s) = log p(I|s) ∝
M
∑

m=1

log p(rm(I, s)). (3)

This likelihood function for an image frame It is the observation model. The
likelihood can be viewed as a generalization of many different histogram simi-
larity measures that are used in literature. For example if p(rm(I, s)) is chosen
to be a Gaussian N (rm(I, s); om, σ2), the log-likelihood becomes the sum of
squared distances as in [11]. The mean om and the standard deviation σ can
be estimated from a set of test images of the object. The often used Bhat-

tacharyya coefficient based model [18,2]: p(I|s) ∝ exp(
∑M

m=1

√

rm(I, s)
√

om/σ2)
can also be seen as a particular choice.
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2.4 Additional features

In our experiments, we have used videos from a static camera. Therefore,
we can use the features from a simple background/foreground segmentation
scheme similar to [20]. We view the result of the background/foreground seg-
mentation as an additional and independent observed image Ĩ where Ĩ(xi) ∈
{0, 1} = P̃. We define a new quantization function b̃ : P̃ → {1, 2} where
m̃ = 1, 2 denotes, say, background and foreground. We define a new set of
features r̃m̃(Ĩ , s) as in (2). Similarly, we define p(Ĩ|s) by defining õ and σ̃.
Intuitively, this latter feature measures the ratio of background pixels to the
foreground pixels in the elliptic region. Due to independent observation as-
sumption, the contributions to the likelihood function will be additive, i.e.,
logL(s) = log p(I|s) + log p(Ĩ|s). Clearly, the set of features could be ex-
tended further: normalized color values, optical flow results, etc. Choosing the
particular type of local image property, i.e., feature selection, is not the focus
of this paper as this highly depends upon the situation [5].

2.5 Iterative search for the most likely configuration

We propose here an efficient and specialized gradient descent procedure to
search for the likely object configurations (3) given an image I. The local
search starts with some starting point s{k}. Here the superscript {k} denotes
the iteration index. Similar to [7,11,23,12,21] the gradient descent step is calcu-
lated using two stages that are repeated iteratively: first the similarity measure
(3) is approximated locally using a Taylor expansion, then the gradient step
is calculated.

The Taylor expansion of (3)(in rm around rm(I, s{k})) is:

logL(s) ≈ c +
M
∑

m=1

p′(rm(I, s{k}))

p(rm(I, s{k}))
rm(I, s) (4)

where c is a constant term. We denote the variable term from above by f(s)
and replace (2):

f(s) =
M
∑

m=1

p′(rm(I, s{k}))

p(rm(I, s{k}))
|V |γ/2

∑

xi∈Se(s{k})

N (xi; θ, V )δ [b(I(xi))−m] =

|V |γ/2
∑

xi∈Se(s{k})

ωiN (xi; θ, V ),(5)
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where

ωi =
M
∑

m=1

p′(rm(I, s{k}))

p(rm(I, s{k}))
δ [b(I(xi))−m] . (6)

For the Bhattacharyya coefficient metric [7], which can be seen as a particular
choice, we have:

ωi =
M
∑

m=1

√

om

rm(I, s{k})
δ [b(I(xi))−m] . (7)

The functional form (5) resembles a kernel based density estimate. The mean-
shift algorithm [15] can be used to calculate the gradient step on (5) with
respect to the object position θ. In the next iteration the above approximation
is repeated for the new position θ{k+1} and a new gradient step is calculated
as in [7]. Instead of the mean-shift we use the extended version (for Gaussian
kernels) [24] to get the gradient step for the full parameterization of the ellipse
s.

The mean-shift algorithm can be used to calculate the gradient step on a
function that have form resembling a kernel density estimate such as (5) from
Section 2.5. The mean-shift step is derived from a lower bounding function of
(5). The lower bound follows from the convexity of the kernel function [15,7].
From the Jensen’s inequality, typical for variational approaches, we can get a
different lower bound:

logf(s) ≥ G(s,q1, ...,qN ) =
∑

xi∈Se(s{k})

log

(

ωi|V |γ/2N (xi; θ,V )

qi

)qi

(8)

where
∑

xi∈Se(s{k}) qi = 1 and qi ≥ 0. The superscript {k} denotes the iteration
index. It is easy to show that for a given s the equality sign in (8) is achieved
for:

qi =
ωiN (xi; θ

{k}, V {k})
∑

xi∈Se(s{k}) ωiN (~xi; θ{k}, V {k})
. (9)

Given the qi-s we maximize the part of G that depends on the parameters:

g(s) =
∑

xi∈Se(s{k})

qi log(|V |γ/2N (xi; θ, V )). (10)

For the Gaussian kernel and ∂

∂~θ
g(s) = 0 we get:

θ{k+1} =
∑

xi∈Se(s{k})

qixi =

∑

xi∈Se(s{k}) ~xiωiN (xi; θ
{k}, V {k})

∑

xi∈Se(s{k}) ωiN (xi; θ{k}, V {k}).
(11)

Note that this update equation for the position estimate is equivalent to the
mean-shift update for the Gaussian kernels. An advantage is that we can now
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derive simple equations for updating V . For Gaussian kernel from ∂
∂V

g(θ, V ) =
0 we get:

~V {k+1} = β
∑

xi∈Se(s{k})

qi(xi − θ{k})(xi − θ{k})T (12)

where β = 1/(1− γ).

For the sake of clarity we present here the whole algorithm for local search for
the most likely configuration (maximum of (3) from Section 2.3):

Input: starting shape s{k} (k = 0), the new image I.

(1) For s{k} calculate the rm-s (2) and the weights (6).
(2) Calculate qi-s using (9) and the new estimates θ{k+1},V {k+1} using (11-

12).
(3) Line search if needed.
(4) If no new pixels are included using the new elliptical region defined by

the new estimates θ{k+1} and V {k+1} stop, otherwise set k ← k + 1 and
go to 1.

Because of the additional local approximation (4) we need an additional a line
search step to get a proper gradient descent procedure. For many distance
measures the second condition from (8) is not satisfied since the weights ωi

from (6) are not always nonnegative. In such cases the update steps are still in
the gradient direction but the line search is advisable. For the Bhattacharayya
coefficient measure the weights are always positive and in practice it turns out
that line search is not necessary since (4) appears to be often a good local
approximation [7,24].

3 Tracking - inference

To track an object, we wish to estimate the the filtering density p(st|I1:t)
for each t = 1, 2 . . . given the sequence of measurements I1:t

1 . The basic
observation in Bayesian filtering is that p(st|I1:t) can be calculated recur-
sively if the dynamic model is described by a first order Markov process
p(st|st−1) = p(st|s1:t−1) and the measurements are independent from each
other given the latent dynamic process, i.e., p(It|st) = p(It|s1:T ). Recursive
updates are performed using:

1 For additional image modalities as in Section 2.4 we have {I, Ĩ} instead of I
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the prediction stage: p(st|I1:t−1) =
∫

p(st|st−1)p(st−1|I1:t−1)dst−1 (13)

the update stage: p(st|I1:t) =
1

c
p(It|st)p(st|I1:t−1) (14)

where c =
∫

p(It|st)p(st|z1:t−1)dst and p(st−1|I1:t−1) is the previous estimate.

3.1 Approximate Bayesian filtering

We use a simple random walk model p(st|st−1) = N (st; st−1, Q). We further
assume transition noise covariance Q to be diagonal, with values estimated
from data. Clearly, more elaborate dynamical models can be envisaged, e.g.,
see [13,14]. Usually in machine vision applications it is the complex form of
the observation function (3) that renders the update step (14) analytically
intractable. We will investigate two approximation strategies:

Approximating the observation model: The p(It|st) when viewed as a
function of st given It is often multimodal. The key to a good approximation
of p(It|st) is in capturing the modes. We initialize the local search from Section
2.5 from K different start positions in order to find the modes. The starting
points are generated as in [2] from αp(st|I1:t−1) + (1 − α)u(st). Here α is a
mixing parameter that allows samples both from the prediction p(st|I1:t−1)
and from some wide distribution u(st) (for example uniform over the whole
image). By tuning α, we adjust the amount of “surprise”, as well as discount
for the fact that we have only an approximate p(st|I1:t−1) (we use α = 0.9).
The result of the local search are K(It) ≤ K modes m(It)

j (as in [2] we detect
two searches ending in the same mode and determine the covariance matrices
R(It)

j by local fitting):

p(It|xt) ≈
K(It)
∑

j=1

ρ(It)
jN (xt; m(It)

j, R(It)
j) (15)

where the superscript j = 1 . . . K(It) denotes the components of the mixture.
Here, ρ(It)

j denotes the weight of the j’th mixture component. The Kalman
filter (KF) is obtained if we use one search (and α = 1) as in [7]. On the
other hand, especially in case of occlusion, p(It|st) has a number of modes.
The correct trajectory can only be disambiguated after observing the future
data. Discarding a mode may cause the tracker to miss the track. Therefore,
keeping all the K(It) modes and performing inference using a mixture Kalman
filter (MKF) [4] is more effective.

Sampling based methods - Sequential monte Carlo (SMC): In SMC,

the filtering distribution is represented by a set of particles (samples) s
(i)
t−1 and

their associated weights {w̃(i)
t−1, i = 1 . . . N}. The idea of SMC is to evolve this
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frame 0 Mean-shift tracking (frames
50,150)

Extended mean-shift tracking
(frames 50,150)

Fig. 1. Illustrating the performance of the extended mean-shift [24] compared to
the mean-shift with simple scale adaptation [7]. The estimated position and shape
of the tracked object is represented by the dashed ellipse.

representation into a new set of weights and particles {w̃(i)
t , s

(i)
t , i = 1 . . . N}

via (13) and (14) when the observation zt becomes available at time t. The
common practice is to use importance sampling to resolve the following basic
issues: (1) How to generate a new set of samples, and (2) How to compute
the new weights. The samples are generated using a proposal density q. Many
well known particle filtering algorithms are equivalent to choosing a particular
form of q; e.g., the bootstrap particle filter (BPF) of [13] is obtained when we

sample from the transition model, i.e., q(st) = p(st|s(i)
t−1).In this paper, we

use the approximation (15) as the proposal sampling distribution - which we
name as particle filter with proposal (PFP) and refer the reader to [8] for the
algorithmic details.

4 Experiments

4.1 Extended mean shift and the mean-shift local search

A sequence presented in Figure 1 is used to illustrate our local search proce-
dure. The glass is tracked successfully while its position, shape and orientation
are changing rapidly. We used the ”best” position from the previous frame to
start the search for the new image. In contrast to the standard mean-shift [7]
which uses simple scale adaptation, our extended algorithm [24] performs a full
5-DOF gradient search to adapt the shape of the object much better (Figure
1) with only a slight increase in computational complexity. Per frame, regular
mean-shift uses on average 4 iterations (or 12 with simple scale adaptation
[7]) while our extended algorithm uses on average 6 iterations per frame. Em-
pirical comparison of running time of the three approaches also validate this
observation where the extended procedure [24] takes on average only 2 times
more then a single mean-shift search but 50% less than the procedure with
the simple scale adaptation [7].
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occlusion KF MKF BPF PFP
a) In the sequence ”FightRunAway1” the tracked person is occluded during a fight-
ing scene, frame 320 shown left (zoom in). The tracking results after the occlusion
at frame 410 are shown right. KF fails.

occlusion KF MKF BPF PFP
b) In the sequence ”ShopAssistant1front” the person gets occluded by walking be-
hind the pillar, frame 80 shown left (zoom in). The tracking results after the occlu-
sion at frame 175 are shown right. KF fails.

occlusion KF MKF BPF PFP
c) In the sequence ”EnterExitCrossingPaths2cor” the tracked person get occluded
by another person, frame 210 shown left (zoom in). The tracking results after the
occlusion at frame 315 are shown right. KF and BPF fail.

Fig. 2. Illustrating how the various tracking schemes handle occlusion. The max-
imum of the estimated density, represented by the dashed ellipse, is used as the
estimated position and shape. For the PFP and BPF the particles are shown as
black ellipses (100 particles used). For MKF the black ellipses are different modes.

4.2 Comparing different Bayesian tracking schemes

We used CAVIAR dataset which contains various surveillance videos with
ground truth bounding boxes of the walking people, see Figure 2 and http:
//homepages.inf.ed.ac.uk/rbf/CAVIAR. From this dataset we selected 12 se-
quences where persons get largely occluded. For each sequence we tracked
a single person that gets occluded. The frame at which the person appears
and the corresponding ground truth bounding box were used to initialize the
object model (the histogram-based appearance and the elliptical shape). The
person is then tracked until it leaves the field of view. We use the following rel-
ative overlap measure to evaluate the algorithms. Let Rgt be the image region
defined by the ground truth bounding box. Let Re be the estimated elliptical
region (the ellipse corresponding to the maximum of the estimated filtering
density p(st|I1:t−1)). The relative overlap is defined by: overlap = Re∩Rgt

Re∪Rgt
where

Re∩Rgt is the intersection and Re∪Rgt is the union of the two image regions.
The relative overlap can have values between 0 and 1 and we report the av-
erage value of the overlap for the sequences. The average overlap might not
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frame 1550 and the foreground
mask

frame 1580 and BPF particle distribution
without and with color

Fig. 3. Illustrating feature combination. In the sequence ”WakByShop1cor” the
tracked person on the left is occluded, frame 1550 (zoom in) shown left. After
the occlusion, frame 1580 shown the particles (black ellipses) of the foreground
blob tracker can’t distinguish the blobs. BPF which combines foreground and color
has the particles still concentrated on the person on the left. The dashed ellipse
represents the mean of the distribution.

Histogram
type

Rel. overlap
with the ground
truth

KF MKF (5
modes)

BPF (100
particles)

PFP (100
particles)

color only average overlap 0.29 0.33 0.31 0.33

overlap>0.2 60.1% 63.1% 60.7% 62.3%

overlap>0.4 40.0% 47.7% 43.5% 48.0%

fg./bg. only average 0.28 0.30 0.30 0.31

(blob overlap>0.2 58.3% 60.2% 60.1% 60.6%

tracking) overlap>0.4 38.5% 46.7% 44.5% 45.5%

color+ fg./bg. average overlap 0.33 0.47 0.40 0.48

overlap>0.2 63.5% 89.8% 81.1% 93.2%

overlap>0.4 45.9% 61.6% 56.1% 62.8%

color+ fg./bg. average overlap 0.47 0.50 0.51 0.51

(simple overlap>0.2 90.6% 92.7% 94.2% 94.6%

sequences) overlap>0.4 59.3% 65.2% 68.1% 69.0%

Table 1
Evaluation results on a data set of 12 sequences, 2100 frames in total. Relative
overlap with the ground truth bounding box is presented. The color histogram,
foreground/background segmentation and their combination were used. The last
row shows evaluation on 12 simpler sequences where the tracked person does not
get occluded, 2300 frames in total.

be the ”best”performance measure for tracking. Therefore, we also report the
percentage of total number of frames where overlap > 0.4, and overlap > 0.2.
We have chosen the relative overlap 0.4 as the threshold since the estimated
ellipse and the ground truth bounding box then look visually quite close.

In Table 1 we report the results of four different tracking experiments for
all sequences. In the first experiment, we used just color features within the

11



0 5 10 15 20 25 30 35
0

0.2

0.4
KF MKF BPF PFP

average computation time in ms

av
er

ag
e 

ov
er

la
p

 

 

simple sequences
with occlusion

Fig. 4. Performance versus computation time for the scenes with and without oc-
clusions.

tracking schemes from Section 3. The results were poor since the algorithms get
sometimes confused by similarly colored objects. We used 8× 8× 8 histogram
in RGB space and no improvements were noticed for using more histogram
bins. In the second experiment we used the fact that the camera was static
and a background subtraction segmentation algorithm can be applied, e.g.
[20]. A blob detection on the foreground mask can then be used for tracking.
In Section 2.4 we show how the foreground mask features can be included into
a histogram based scheme. The tracking schemes from Section 3 resemble then
simple blob tracking where goal is to find the ellipse with certain number of
foreground pixels. However, the blob tracking can not differentiate between
different blobs especially during and after occlusions. This is illustrated in
Figure 3. In the third experiment we combined the two modalities, see Section
2.4. This leads to large improvements. Some of the sequences and the tracking
results are illustrated in Figures 2 and 3. Finally, in the last experiment we
illustrate that the performance depends on the type of sequence. Therefore
we selected another set of 12 simpler sequences from the CAVIAR data where
there were no significant occlusions of the tracked person.

The performances of the different schemes on the CAVIAR sequences and
the average computation times are summarized in Figure 4. The computation
times in Figure 4 are measured for our implementation on a 2GHz computer
but they should give a realistic relations between the different techniques.
There are more mean-shift iterations needed to find the modes for the diffi-
cult sequences with occlusions. Therefore the computation time for KF, MKF
and PFP is slightly higher for these sequences. We used 100 particles for the
sampling approaches BPF and PFP, and 5 mean-shift searches for the MKF
and PFP. With this settings all the algorithms can perform in real time. An-
other reason for using 5 mean-shift searches in MKF and PFP was that we did
not observe significant performance improvement on the dataset when using
more than 5 searches.
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5 Conclusions

We presented an observation model where the shape of the tracked object is
approximated by an ellipse in general position and its appearance by histogram
based features. Advantages of the model are its simplicity and general applica-
bility. An additional advantage is the provided efficient local search procedure.
Finally, we demonstrated a simple combination of different modalities.

The paper also proposes to use the local search as a mode finding algo-
rithm which is then integrated into a range of approximate Bayesian filtering
schemes: KF, MKF, and PFP (see Section 3.1). The developed schemes are
compared with each other. Being unimodal the KF performed the worst in all
tests. The performance of the MKF, BPF and PFP was on average quite sim-
ilar for the simpler sequences from the realistic surveillance dataset. However,
for the more difficult sequences with occlusions the performance of the KF
was very poor and the performance of BPF also degraded. The local search
is used within the MKF and PFP to find the modes of the estimated distri-
bution more effectively which is especially important after the tracked object
was occluded. Theoretically, if the number of particles is increased, the BPF
should also be able to find the modes more quickly but this would require
more computation time.

We also provide empirical results on computation time of the presented schemes.
The computation in the KF and MKF scale linearly with the number of local
searches that are performed at each step. The computation costs for the BPF
and PFP scale linearly with the number of particles. The PFP includes also
the costs of the local searches. The measured times indicate that the PFP with
5 searches and 100 particles requires twice the time of the MKF with also 5
searches. The MKF is a better choice if the computation time is important.
On the other hand, the PFP retains the theoretical convergence properties [8]
and the tracking results improve slightly.
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