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Abstract. We describe how to build a VIDEOPLACE-like vision-driven user 
interface using “optical-flow” measurements. The optical-flow denotes the es-
timated movement of an image patch between two consecutive frames from a 
video sequence. Similar framework is used in a number of commercial vision-
driven interactive computer games but the motion of the users is detected by 
examining the difference between two consecutive frames. The optical-flow 
presents a natural extension. We show here how the optical-flow can be used to 
provide much richer interaction. 

1   Introduction 

Vision-driven user interfaces are getting close to mass usage because computers are 
constantly becoming faster and cameras are getting cheaper. Facial and hand gesture 
recognition from video images remain therefore to be hot topics in the computer vi-
sion society [2]. Impressive results are reported and many applications seem possible. 
However, a real-world user-interface should fulfill a number of extremely difficult 
requirements: the interface should be very easy and natural to use, there should be no 
initialization and the system should work in difficult and changing environment condi-
tions. It seems that the only actual commercial real-world vision-based interfaces are 
currently present in the gaming industry. The available games demonstrate rich and 
enjoyable interaction using just some simple computer-vision techniques. Although 
the techniques are often far away from the current state of the art in the computer-
vision research, the used methods are fast and robust and fulfill the mentioned difficult 
real-world requirements. Furthermore, the gaming industry is particularly suitable for 
application of the computer-vision algorithms since the remaining imperfections of the 
vision-based interface are tolerated by the game players and often actually considered 
as an additional challenge. 

There are a number of games and other systems that use a vision-based interface. 
We consider in this paper the “real”  real-world systems that fulfill the mentioned re-
quirements and can be actually used by anybody that has a web-cam attached to a PC. 
As we mentioned, it seems that the only actual commercial usage of the vision-based 
interfaces is present in the gaming industry. The currently available games use the 
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VIDEOPLACE-like interaction model [9] where the users see themselves embedded 
into computer graphics with some computer generated objects that react to their 
movements. See section 2 for a detailed description. The IntelPlay Me2cam [12] and 
Vivid Group Gesture Xtreme [11] systems segment the player from the background in 
order to detect the user gestures. However, the segmentation requires initialization and 
a special setting. Another standard technique used for vision based interfaces is the 
detection of the skin colored regions in an image [21], but this is not robust to light 
conditions. The two commercial game suites of interest are the Reality Fusion Game 
Cam [3] and the Sony Eye Toy [4]. These games use simple difference between two 
successive images to detect the motion of the users (see section 3). The detected 
movements of the players are used to interact with the virtual objects. This is fast and 
robust and does not require initialization or a special setting. We should mention also 
the QuiQui game [8] where a computer animated avatar mimics user actions. This 
game is also using the simple image-differencing. 

In this paper we describe a framework for building VIDEOPLACE-like vision-
driven user interfaces using the “optical-flow”  measurements. The “optical-flow”  
denotes the movement of an image patch between two frames of a video sequence. 
There are various techniques for estimating the optical-flow [13,14,20]. The men-
tioned currently available vision-driven games are using the image-differencing tech-
nique to detect user movements. The optical-flow presents a natural extension of the 
image-differencing. The optical-flow not only detects the movement but also gives us 
an estimate of the direction and the speed of the movement. This simple extension 
allows much richer interaction while the described requirements for the “real”  real-
world systems are still fulfilled. We implement a system that is using the standard 
image-differencing and a system that is using the optical-flow-based measurements. 
The two techniques are evaluated and compared both subjectively and objectively. We 
also present how optical flow can be used to perform some more complex tasks that 
are not possible using the standard image-differencing technique. 

The paper is organized as follows. First, in Section 2 we describe the 
VIDEOPLACE-like interaction framework that is used for various interactive systems 
and in the vision-driven computer games. In Section 3 we describe the image-
differencing and how it is usually used to detect the movement of the user in the vi-
sion-driven games. We also describe a robust version of a standard technique for es-
timating the optical-flow and how it can be used for vision-based interaction. The 
experiments are reported in Section 4 and conclusions in Section 5. 

2   VIDEOPLACE-like Interaction Model 

A VIDEOPLACE-like interaction involves an installation where the users see them-
selves, or some representation of themselves, on a video-projection screen together 
with some additional computer graphics. A realization is presented in the figure 1. 
Another simpler version would be just a computer monitor and a web-camera. First 
experiments using such interaction model were conducted by the artist Myron Krueger 
in his work VIDEOPLACE as early as 1969. See a description in [9]. This interaction 



model is used later by other artists for various installations [7], by computer-vision 
researchers to demonstrate their work [5,21] and finally in the gaming industry 
[3,4,11,12]. The futuristic interface from the movie “Minority Report” (2002) (de-
signed by John Underkoffler) is another example. 

2.1 Virtual Mirror Effect 

 

Fig. 1. VIDEOPLACE-like interaction model. A typical simple realization 

The VIDEOPLACE-like interaction is based on the illusion of a mirror. Regular mir-
ror is a common physical object in our environment and this makes a VIDEOPLACE-
like virtual mirror a natural and easy to use interface [10]. It is also a simple way to 
provide the users with a certain level of immersion into a virtual world. There are 
some technical difficulties in realizing a completely realistic mirror illusion: 

• If we move in front of a real mirror our view point is changing and conse-
quently also the reflected image we see in the mirror. Since, the digital cam-
era is static it is very difficult to simulate this effect. We would need to track 
the user’s eyes position and to change the projected images accordingly. 
Even then, this would be possible only when there is a single user. To the 
best of our knowledge, there is no such a system that is able to compensate 
for the view point changes. 

• Another related but simpler problem is the eye-contact. Having the eye-
contact with yourself when you look at your reflection is important for the 
mirror illusion. An approximate solution is to use a semitransparent projec-
tion screen and to put the camera behind the virtual mirror somewhere at the 
eye height. See for example [5]. It is also possible to track the person eyes 
and apply the corrections [6]; 

Fortunately, in practice even the simplest realization with a web-camera and a com-
puter monitor is enough to produce a reasonable effect and provoke interaction. Fur-



thermore, in the early work of Myron Krueger there was just a shadow of the person 
and in the QuiQui game [8] there is a computer animated avatar. 

2.2   Vision-driven Gadgets 

Beside the mirror-like image of the users, the VIDEOPLACE-like interaction involves 
some additional computer generated objects that are presented on the screen. The 
objects react to the movements of the users and we denote them as “vision-driven 
gadgets” . There is a variety of types of such objects and we will mention the most 
common ones: 

• Static object: These objects do not react to the user movements directly. 
For example there is often some static computer graphics present or there are 
numbers to show current score in the games etc.  

• Button: This is the basic component of almost every user interface. In the 
VIDEOPLACE-like interaction the user should be able to use his movement 
to press a button. The current games are based mainly on this type of object 
or a variation of this type. The most common variation is the “moving but-
ton” . The object moves around the image and when the user selects it the ob-
ject changes its behavior. For example in a game from [4] bubbles fly 
around the screen and they explode when the user selects them. In some 
other games from [3] and [4] the objects bounce away when selected. The 
button is selected if there is a movement in the area of the image occupied 
by the button. In the current games the image-differencing technique is used 
to detect the movement and we will show how this can be improved by using 
the optical-flow.       

• Movable object: Another common part in a user interface. For example the 
icons in the Windows user interface are dragged using the mouse. In the vi-
sion-based interface the user should be able to move the objects of this type 
using body movements. In the currently available games that use the image-
differencing this is not possible. As we mentioned, in some games from [3] 
and [4] the objects bounce away when selected and this, in a way, controls 
the movement of the objects but very roughly. The interaction is still button-
like. The optical flow provides also information about the direction and the 
magnitude of the movement and this can be used to move the objects and 
provide much richer interaction. 

3   Detecting and Measuring Motion 

A vision-based interface is driven by the movements of the users that are observed by 
a digital camera. Robust techniques are needed to detect and measure the motion of 
the users. We will discuss the common motion detection techniques in this section. 
The techniques are illustrated in figure 2. In the VIDEOPLACE-like framework the 
presented image consists of a mirror-like image of the users and a number of aug-



mented computer generated vision-driven gadgets. The gadgets react to the user 
movements. We will denote the region of the image occupied by a “vision-driven-
gadget”  by W. We need to detect and measure the movement in this region.  

 

  
a) a frame from an image sequence b) the next frame from the sequence 

  
c) the difference D between two frames  d) optical flow for some image points 

(lines present displacements) 

  
e) skin color segmentation f) background subtraction 

Fig. 2. Common motion detection techniques used for vision-driven interaction 

3.1   Image Differencing  

We will usually have RGB images. Let us use R0(x), G0(x), B0(x) and R1(x), G1(x),   
B1(x) to denote the RGB values of a pixel at position x in two consecutive images 
obtained from the camera. Here x=[x y]T is a vector, where x and y are the coordinates 



of the pixel within an image. The change of the image values within a region W can be 
described by: 

D= �
   x withinWall

{ (R1(x)- R0(x))2+(G1(x)- G0(x))2+(B1(x)- B0(x))2}  (1) 

The motion can be simply detected by checking if D is greater than a predefined 
threshold value. The currently available games [3][4] use this or a similar technique to 
detect the motion of the users. The motion is used for a “button-like”  interaction we 
described in the previous section. If motion is detected within W, the button is acti-
vated. Note that in this way we do not extract the direction of the motion and the value 
D is just weakly related to the magnitude of the motion. See figure 2c for an example. 

3.2   Optical Flow 

If a vision-driven-gadget covers a region W we would like to estimate the 2D dis-
placement d=[dx dy]

T (optical flow) of this patch between two consecutive images that 
are captured by the camera. We will present a standard techniques for estimating the 
optical flow from [13][14] and modify it to get more robust results. 

For simplicity we will use the gray intensity images. If we have RGB images we 
can get the intensity I(x) of a pixel by I(x)=(R(x)+G(x)+B(x))/3. For an intensity im-
age I0 and a patch W, the goal is to find the patch in the next image I1 that is the most 
similar to the initial patch. If we put this into equations the goal would be to find the 
displacement d that minimizes: 

J(d)= �
   x withinWall

(I1(x+d)- I0(x))2 (2) 

If we use a truncated Taylor expansion approximation of (2) we get: 

Zd=e, (3) 

where the 2x2 matrix Z and the vector e are given by: 
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(4) 

 

e= �
   x withinWall

 (I1- I0)[gx gy]
T (5) 

Here gx and gy present the derivatives of the initial intensity image I0 in x and y direc-
tion. We compute the derivatives using a simple Sobel operator [19]. 

The procedure form [13] repeats the Taylor approximation (2) iteratively. If d(k) 
presents the estimated displacement at k-th iteration the iterative solution is given by: 

d(k+1)= d(k)+Z-1 e(k) (3) 



At each iteration d(k) is used to wrap I1 and recalculate e(k). The matrix Z remains the 
same. The procedure stops when the displacement estimate does not change any more 
or the maximum number of iterations is reached. The estimated displacement d can be 
used in various ways. See the experimental section for some examples. 

Optical-flow estimates are often very noisy. Texture in an image is important to re-
liably estimate the position of an image patch W. This is known as the “aperture prob-
lem” [20]. However, we can avoid this in the following way. If the patch is in an area 
of the image with uniform intensity, the motion estimate will be very noisy. This can 
be detected using the eigenvalues e1 and e2 of the matrix Z. See also  [15][16]. Both 
eigenvalues will be small and can set the motion to zero since it can not be reliably 
estimated. If the W is on a line-like structure in the image, the motion is only well 
defined in the direction normal to the line. This situation is detected when one of the 
eigenvalues is small and the other large. We then calculate the motion only in the 
direction of the eigenvector that correspond to the larger eigenvalue. This direction is 
the direction normal to the line. Only when both eigenvalues are larger than a thresh-
old we calculate the full optical flow displacement as described. 

Calculating the optical-flow in real-time for the whole image might require a lot of 
computing power. However, we only need optical-flow measurements for the visual-
driven gadgets which can be done very fast. 

3.3 Other common motion detection methods 

Among other common techniques for detecting and measuring motion of the user, we 
will mention the “background subtraction”  and the “skin color detection” . 

Background subtraction is a method that tries to distinguish the user from a static 
background. See an example in figure 2e. The IntelPlay Me2cam [12] and Vivid 
Group Gesture Xtreme [11] systems use this technique, but a special setting and ini-
tialization is needed. Background subtraction is also sensitive to environment changes 
and camera movements. In such cases the system should be re-initialized. Some auto-
matic adaptive methods exist [22,23], but they are slow in adapting and they assume 
that the camera most of the time observes background which is not the case when a 
user is using a vision-based user interface. 

Skin color detection is a common technique used for building vision based inter-
faces [21]. Regions in the image that have the color similar to that of the human skin 
are detected. These regions usually correspond to the hands and faces of the users. See 
figure 2f. The movement of these regions can be used for interaction. See [21] for 
some examples. Unfortunately, the observed colors depend heavily on the light condi-
tions and also the camera that is used. Therefore, for good performance a careful cali-
bration is required. 

In conclusion, both techniques do not fulfill the difficult “ real”  real-world require-
ments and will not be considered further in the experiments.  



4 Experiments 

In this section we will evaluate and compare the performance of the image-
differencing and the optical-flow techniques. 

4.1 Qualitative Comparison 

Both techniques comply with the requirements for the “real”  real-world algorithm 
mentioned in the introduction. Light conditions are not important, there is no initiali-
zation etc. This is probably why the commercial vision-driven games often use the 
image-differencing. Optical-flow measurements preserve the good properties of the 
image-differencing technique but provide more information. A summary is given in 
the table 1. 

Both techniques present a simple low-level analysis of the scene. However, the op-
tical-flow might be in perspective used also for some higher semantic level under-
standing the user actions. Jahansson, in his famous experiments [1], filmed people in 
darkness wearing small light bulbs on their body. Moving cloud of identical bright 
dots on a dark field was enough to detect people in the scene and even assess their 
activity, gender and age. Inspired by [1], computer vision algorithms for detecting 
human activities from optical-flow were reported in [17] and [18]. These results might 
be important for further extension of the interface we present in this paper. 

Table 1. Qualitative comparison of the two simple methods. A summary 

 Image-differencing Optical-flow 
No initialization + + 
Works under different 
environment conditions 

+ + 

Simple to compute + + 
Motion detection  + + 
Motion magnitude � + 
Motion direction - + 

 



 4.2 Buttons Experiment 

  
a) simple menu b) complex menu with randomly distrib-

uted buttons 

Fig. 3. Buttons experiment. Two situations are presented.    

We analyzed the performance of the two techniques on the basic element of any user 
interface, the button. (see section 2.2). We used simple static buttons that are selected 
when the movement in the area W of the button is detected. We implemented a system 
that is using the standard image-differencing technique. To filter out some possible 
noisy detection we wait until the motion is detected for two consecutive frames. We 
implemented also a system that is using the optical-flow. The button that is driven by 
the optical-flow will react only to the movement in the right direction. This filters out 
many unwanted motions. According to the users in our experiment, this is a very natu-
ral way of pressing a virtual button. 

The experiments were performed using 14 people. The task was to press the button 
presented using green color. See figure 3. We counted number of well selected buttons 
and the number of wrongly selected buttons during a period of 30 seconds. After a 
button was selected there was a 0.5 second pause before a new button is randomly 
chosen and highlighted using green color. The users had 2 trials to learn to use the 
interface and the results from the third trial are reported in table 2. We observe a big 
improvement when the optical-flow is used. In the complex menu case (figure 3b) 
image-differencing was completely useless.  

Table 2. Results of the experiments. We report the difference between the number of well 
selected buttons and the number of wrongly selected buttons. Mean value, standard deviation, 
maximum and minimum are reported 

 Image-
differencing 
(simple menu) 

Optical-flow 
(simple menu) 

Image-
differencing 
(complex menu) 

Optical-flow 
(complex menu) 

Mean 11.2 19.2 -20.9 5.7 
Std 6.6 2.9 17.8 4.9 
Min 1 13 -54 1 
Max 20 24 0 14 



4.3 Movable Objects 

  

  

Fig. 4. Moving objects. Some images from a public performance are presented. Children sorted 
virtual objects on color and shape  

Optical flow can be used to perform another basic user-interface task: dragging a 
virtual object. A vision-driven-gadget is moved to the new position according to the 
calculated displacement d. We realized an interactive vision-driven game where the 
task was to sort virtual objects on shape and color. We had a large number of users 
during a set of public performances. It turned out that it was easy and fun for most 
people to use this interface. We had also a large number of children participants. The 
children enjoyed the game enormously and they were also able to learn to use the 
interface very fast. See some screen-shots in figure 4.  

6   Conclusions 

We proposed a way to use optical flow for vision-based user interfaces and presented 
how various basic user-interface tasks can be realized. The optical-flow calculation is 
fast, simple and robust. It does not require initialization or some special setting and it 
is potentially very interesting for making “real”  real-world vision-driven user inter-
faces. An example is the gaming industry where optical flow presents a natural exten-
sion of the currently used simple and robust techniques. 
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