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Abstract

A simple method is presented for 3D head pose esti-
mation and tracking in monocular image sequences. A
generic geometric model is used. The initialization con-
sists of aligning the perspective projection of the geomet-
ric model with the subjects head in the initial image. After
the initialization, the gray levels from the initial image are
mapped onto the visible side of the headmodel to form a tex-
tured object. Only a limited number of points on the object
is used allowing real-time performance even on low-end
computers. The appearance changes caused by movement
in the complex light conditions of a real scene present a big
problem for fitting the textured model to the data from new
images. Having in mind real human-computer interfaces we
propose a simple adaptive appearance changes model that
is updated by the measurements from the new images. To
stabilize the model we constrain it to some neighborhood of
the initial gray values. The neighborhood is defined using
some simple heuristics.

1. Introduction

The reconstruction of 3D position and orientation of ob-
jects in monocular image sequences is an important task in
the computer vision society. This paper concentrates on 3D
human head tracking. The applications we have in mind
are: model-based coding for video conferencing, view sta-
bilization for face expression recognition and various pos-
sible human-computer interface applications. Anyway, the
approach proposed here can be applied in general for rigid
object tracking in 3D.
In the initialization procedure we align our generic geo-

metric head model with the observed subject’s head. This
can be done manually, or automatically by using some other
algorithm. For new images in the sequence, tracking con-
sists of estimating the human head pose with respect to this

initial pose. Because of the perspective projection of stan-
dard cameras it is possible to estimate the 3D pose from the
2D image data. We use an initially aligned generic geomet-
ric 3D head model. Therefore, as described later, the 3D
pose is estimated only up to a scaling factor. However, this
is of no importance for the applications we are considering.
The paper is organized as follows. Related work is pre-

sented in the next section. Then the geometric part of our
model based approach is described. The adaptive radiomet-
ric model is presented in section 6. Finally, the whole al-
gorithm is described and some experimental results are dis-
cussed.

2. Related work

One of the big problems in tracking algorithms is the
object appearance change caused by movement under real-
istic light conditions. These effects are usually very hard to
model. In almost all realistic situations light conditions are
complex and unknown.
Many 3D head tracking methods start from tracking

some distinctive feature points on the head (for example
eyes, nose, mouth corners etc.) in the 2D image plane[11].
The appearance changes caused by movement in realistic
light conditions are addressed by choosing appropriate sim-
ilarity norms for tracking the selected feature points. A
generic 3D model is then fitted to these 2D measurement
to estimate the 3D head pose. The biggest drawback is that
features can be lost because of occlusions or some other not
modeled effects. Knowledge about the 3D object geometry
can be used to predict feature point occlusion and to recover
it if it appears again. An attempt is reported in [10] where
they also used the 2D feature trajectories in a structure from
motion algorithm to update the generic 3Dmodel geometry.
Another way is to use the generic 3D model geometry

directly. This is usually done by forming a textured 3D head
model using the initial image [1]. This textured model is
then fitted to the data from the new images. We also use the



textured 3D model in this paper. The novelty is that only a
limited number of points on the object is used to allow fast
implementation.
In practice, because of complex light conditions, head

movements introduce large changes in the texture of the pre-
viously described textured 3D head model. An approach is
to form a large image database of the object under various
light conditions. Then a model should be constructed from
the data. This is usually done by finding a representative or-
thogonal linear subspace using principal component analy-
sis (PCA) [12] [9]. This subspace is used to represent the
whole database (all possible appearances of the object when
it moves in realistic light conditions). How much is a new
image ”face like” is calculated by measuring the distance
from this subspace. This ”brute force” method needs a long
and hard to perform preparation procedure, which is highly
unpractical for real user interface applications. A textured
cylindrical model with PCA appearance changes modeling
is presented in [7]. We search here for other simpler and
more appropriate solutions. In a typical situation we have
only one image of the object - the initial image. Then, us-
ing some heuristics we define some neighborhood around
the initial gray values to constrain possible object appear-
ance changes.
No big appearance changes are expected for small move-

ments between two consecutive images. We then try to use
the gray levels from the new images to update the 3D ob-
jects texture. This is somewhat similar to the methods that
use optical flow (movement of gray level patterns in the im-
ages) as their input [3]. Because of error accumulation these
methods were not able to deal with longer image sequences.
Some solutions were proposed trying to prevent this drift
away [8] [13]. Our method constrains the texture appear-
ance to the neighborhood of the initial values and in this
way prevents the drift away.

3. Model based approach

We use a model-based approach where we try to find the
best fit of the model to the images in the sequence. The
parameters we want to estimate are contained in the vector:

~q = [ x y z α β γ ]T (1)

where x, y, z describe the position and α,β, γ are the Euler
angles describing the head orientation in the camera coordi-
nate system.
If we don’t take into account the previous history of the

head movement and we consider all the image pixel mea-
surements equally important, the problem can be formu-
lated as follows:

Figure 1. The Geometric Model

b~q = argmin
~q

(
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(model(~q)− currentimage)2) (2)

where integration is done over the whole image area andb~q presents the estimated pose parameters. Here, model(~q)
presents the model generated image and currentimage is
the current image from the camera.
In practice, it is not feasible to have the complete model

of the imaging process. Therefore, we are bound to use a
number of approximations. We divide the model into two
parts: a geometric part and a radiometric part. These two
parts are described in the next sections.

4. The geometric model

There are various ways to describe the geometry of 3D
objects [2]. We use a triangular mesh, the common repre-
sentation supported by fast graphics hardware. The mesh
we use (Figure 1) is generated as an attempt to represent the
3D geometry of a human head.
Let ~xobj,i = [ xobj,i yobj,i zobj,i ]T present the po-

sition of a fixed point i on the object’s surface in the camera
coordinate system. This position, of course, depends on the
head pose ~xobj,i = ~xobj,i(~q). For simplicity of notation we
will further often omit ~q.
We assume that the camera is calibrated. Therefore we

know the perspective projection function ~xim,i = p(~xobj,i)
of the camera lens system that projects the 3D point ~xobj,i
to the 2D image plane point ~xim,i . If the camera doesn’t
introduce any distortions we have:
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#
(3)

where f presents the focal length of the camera lens.
A generic geometric human head model is used. The

size of the subject’s head is unknown and we don’t want to
complicate the initialization procedure. Therefore, the ini-
tial position (contained in ~q0) is known only up to a scaling
factor. As a consequence 3D head position is estimated only
up to the scaling factor. As mentioned before, this doesn’t
present a problem for the applications we are considering.

5. Problem definition

We define a set of test points on the object ~xobj,i. For our
triangular meshmodel we choose the centers of the triangles
in the mesh as shown in Figure 1. Our proposal is to check
the fit of the model only at these object defined points and
not to try to reconstruct the image. This can heavily reduce
the amount of data to be processed and speed up the tracking
algorithm. Therefore, our problem (2) for the k-th image
can be redefined as:b~qk = argmin

~qk
[

1P
i
w(i, ~qk)X

i

w(i, ~qk)ρ(Mk(i)− Ik(p(~xobj,i(~qk))))] (4)

where the summing is done over all test points. Here,
Mk(i) presents the model-predicted gray value to be ob-
served when ~xobj,i is projected to the image plane and
Ik(p(~xobj,i)) is the actual observed value at that position
in the current image. We search for the pose parameters b~qk
that give the best fit.
The measurements are weighted by:

w(i, ~qk) =½
A(i) · ~xobj,i · ~nobj,i, for ~xobj,i · ~nobj,i < 0

0, otherwise (5)

A point ~xobj,i corresponds to a triangular patch i of the
object surface as defined by the generic geometric model.
The size of the patch is denoted byA(i). The current normal
of the patch is described by ~nobj,i = ~nobj,i(~qk). In total, the
weight w(i, ~qk) presents the visible size of the triangular
patch i. Note that occlusion by other triangular patches is
not included in this model. However we don’t expect such
situations to occur often.
Because of many not modeled effects some measure-

ments can contain unexpectedly high errors. Therefore, in-
stead of the standard quadratic norm we use the less sensi-
tive Geman & McClure robust error norm:

ρ(x) =
x2

1 + x2/σ2
(6)

Here, σ controls the difference beyond which a measure-
ment is considered as an outlier [4].

6. The radiometric model

The radiometric model describes which gray value
Mk(i) is expected to be observed in the k-th image when
object point xobj,i is projected onto the image plane. In gen-
eral this depends on the local surface radiometric properties,
local surface orientation and light conditions. Approximate
radiometric models exist [6] and theoreticallyMk(i) should
then be written as: Mk(i, ~xobj,i(~qk), ~qk). However, the lo-
cal surface properties are unknown. Also the lighting con-
ditions in real scenes are very complex in general and we
are forced to use a number of approximations.

6.1. Approximate radiometric models

After initial alignment of the 3D object with the first im-
age (k = 0) in the sequence we can obtain the valuesM0(i)
for the test points ~xobj,i visible for that head model pose:

M0(i) = I0(f(~xobj,i(~q0))) (7)

where the ~q0 presents the parameters selected to align the
generic model with the subjects head in the initial image.
The simplest approximate model is the so called constant

brightness assumption that predicts the gray value in the k-
th image as:

Mcb
k (i) =M0(i) (8)

This model is correct for Lambertian surfaces and with
only ambient light present, which is far from realistic. A
simple relaxation is to allow global brightness changes by
adding a constant a to all points gray values. Further ap-
proximation is to include linear brightness changes in the
image plane over the object.[5]. This crude model can be
written as:

M lin
k (i) =M0(i) + a+ [ b c ] · ~xim,i (9)

where we have a dot product of the vector [ b c ] and im-
age projection of the i-th object point, vector ~xim,i. The
parameters a, b, c should be estimated for each new image
k.



Figure 2. Function η(Ik) for β = 0.0004

We use this additive model to describe some global illu-
mination changes. Although this model does not need any
preparation procedure, the changes in the appearance of the
human face are to complex to be well approximated in this
way. We introduce an adaptive model in the next section
which allows floating around this model.

6.2. Adaptive radiometric model

For small object movements between two consecutive
images we don’t expect large changes in appearance and
the constant brightness model can still be used. Then, an
adaptive model can be formed. After model fitting on the
new image using the constant brightness assumption be-
tween two images, the measurements from the new image
can be used to update the model. The predicted value for
the next k + 1-th image becomes:

Madaptive
k+1 (i) =Madaptive

k (i) + α · (innovation) (10)
innovation = Ik(p(~xobj,i(b~qk)))−Madaptive

k (i) (11)

here constant α encodes our assumption that the gray value
is not supposed to change rapidly by taking into account the
previous values with exponentially decreasing weights (1st
order AR filtering). With this kind of innovation we have
the error accumulation problem but now low-pass filtered.
For α = 1 this is similar to some optical flow approaches,
and for α = 0 we get the constant brightness assumption
model.
The initially obtained valuesM0(i) contain the gray val-

ues for certain head pose and illumination. We can try to use
this measurements too to form the innovation. A crude ap-
proximation of the appearance changes from this initial val-
ues is the linear model described by (9). Our assumption is
that the gray values are not going far away from this model.
We incorporate this in the innovation by using the follow-
ing combination of the current measurement Ik(p(~xobj,i))
and linear modelM lin(i) which is based on the initial mea-
surementsM0(i):

η(Ik(p(~xobj,i))) =

Ik(p(~xobj,i))−Mlin
k (i)

(1+β·(Ik(p(~xobj,i))−Mlin
k

(i))2)2
+M lin

k (i) (12)

The function η compresses the measured values
Ik(p(~xobj,i)) to some neighborhood of the simple model
M lin
k (i) as presented in Figure 2. This is controlled by the

constant β. Note that this function has actually the form of
the derivative (influence function) of the robust norm intro-
duced in (6).
Finally we define our adaptive model with:

innovation = η(Ik(p(~xobj,i)))−Mk(i) (13)

This simple model encodes our two assumptions. First,
the gray values are not changing rapidly, controlled by the
parameterα. Second, we approximate changes from the ini-
tial valuesM0(i) by a linear modelM lin

k (i) and assume that
the gray values remain in the neighborhood of this simple
model , controlled by the parameter β. Only initial align-
ment of the 3D model is needed to form the model.

7. Algorithm

For each new image we have to find the optimal head
pose vector b~q according to (4). We already need the initial
alignment of the 3D model. Afterwards, we assume that
there are no large changes in head pose between two suc-
cessive images and for each new image we use the previous
head pose as the starting position. Than we search for the
nearest local minimum using Gauss-Newton iterative pro-
cedure. For determining image derivatives we use Gaussian
kernels. Our measurements are also done with Gaussian
blurred image at the same scale.
Note that (4) has also the weights w(i, ~qk) described by

(5) that depend on the current pose ~qk. For simplicity, we
don’t include this in derivatives for the Gauss-Newton iter-
ative procedure. Anyway, this is included in the line search
part after we determine the search direction. Also, the ro-
bust norm is included only as a weight factor in every iter-
ation forming in total an iteratively reweighted least square
(IRLS) minimization procedure.
Further, the parameters a, b, c for the linear approximate

radiometric model should also be estimated. This could be
done together with b~q. For simplicity we do this separately.
Since (9) is linear with respect to its parameters this is done
in a single iteration. The same weights w(i, ~qk) described
by (5) and the same robust norm (6) are used.
Finally the whole algorithm can be described as follows:

1. initialization
input: initial image I0 and pose ~q0
output: initial textureM0(i)



• obtain M0(i) for the visible points according to
the initial pose ~q0

2. tracking -
input: current image Ik, current textureMk(i) and pre-
dicted pose ~qk(= ~qk−1 in our case, we don’t use any
temporal model for head movement in this paper)
output: Mk+1(i), ~qk, ~qk+1 = ~qk

• constant brightness assumption, find optimal ~qk
according to (4)

• fit the approximate linear model, find a, b, c
• update model, according to (10) and (12)

8. Experiments

Various experiments were conducted. Our unoptimized
test version of the algorithm was able to work at standard
PAL 25 frames/second even on a low-end Pentium Celeron
500MHz. The time needed for an IRLS algorithm iteration
was less than 10ms. We used three iterations per image and
the rest of the time was used for visualization. A cheap
web camera is used that gives 320x240 pixel images with a
large amount of noise. Using few images of known objects
we approximately determined the camera focal length in a
simple experiment. The camera pixels are assumed to be
squares. Smoothing and differentiation is done with Gaus-
sian kernels (with standard deviation =2). For the robust
norm σ = 100 is used.
A demonstrational version of the algorithm can be down-

loaded at: http: //www.mi.el.utwente.nl
/zzz /HeadTracking /index.htm

8.1. Experiment 1

To illustrate the operation of the adaptive model we con-
structed an experiment where the subject has rotated his
head parallel the image plane (roll rotation) and than re-
mained in that position. We wanted to investigate only the
influence of the appearance changes. This kind of move-
ment is chosen because it doesn’t suffer from the geometric
model errors. The light conditions were chosen to be not
too difficult (no specular reflections and only small global
brightness changes). For better comparison instead of the
linear approximate modelM lin(i) in (12) we used only the
constant brightness modelMcb(i). The adaptive algorithm
(here only around Mcb(i)) for α = 0.3 and β = 0.0004
could handle the changes but they were to big for the pure
constant brightness approach (α = 0 ) which diverged af-
ter some time. It was also quite instable before it diverged
(see Figure 3). For parameters α = 1 and β = 0 the adap-
tive model can drift away similar to some optical flow ap-
proaches. As it can be observed in Figure 3, after this short

movement the model was already not fitting the target prop-
erly.

8.2. Experiment 2

We conducted a series of experiments in typical office
conditions at various locations. Some captures from the
tests are presented in Figure 4. Difficult light conditions
caused large appearance changes. The movements were of
normal speed. Rapid movements can also be handled ex-
cept for large out the plane rotations (pitch and jaw rota-
tions). Out the plane rotations of up to approximately 35
degrees can be handled. This, however, depends on the
camera focal length and object -camera distance. Web cam-
eras have usually very small focal length and for this angle
we could almost see only one half of the head (see the fig-
ures). For the parameters α and β we always used α = 0.3
and β = 0.0004 and that appeared to work good for vari-
ous situations. In future we plan to obtain ground truth data
in order to investigate the precision of the algorithm and the
influence of the parameters α and β. For the moment the re-
sults were checked only visually by backprojecting the 3D
mesh head model over the images. For bigger α the tracker
relied too much on the new measurements and tended to
float away sooner. The parameter β describes howmuch the
appearance can change. Too small β (big changes possible)
allows the model to float away with time. At least for the
initial pose (initial image) we would like to have the neigh-
borhood defined by β small enough that the model can not
float away. This can then be used as a criterion for choosing
an appropriate β.

9. Conclusions and further work

A real-time 3D head tracking algorithm is presented.
A simple heuristic model is used to describe the appear-
ance changes caused by movement in realistic light condi-
tions. The algorithm was able to operate in various real-
istic conditions using cheap low-end equipment. Together
with an automatic initialization procedure and reinitializa-
tion when the target is lost, the algorithm seems to be a
promising solution for a number of applications. The algo-
rithm heavily relies on the initial image. Therefore, small
movements around the initial head pose were handled the
best. However, for many human-computer interaction ap-
plications this would be exactly the way the system would
be used.
Evaluating the system using the ”ground truth” data is

our next step. Automatic initialization and reinitialization
should be realized. The algorithm relies on the generic ge-
ometric head model that is not appropriate for all the faces.
Automatically adapting the geometry to new faces would
greatly improve the algorithm.
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Figure 3. Adaptive model and estimated angle γ (roll rotation)
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Figure 4. Real time tracking


