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Abstract—Estimating the relative pose between two camera
positions given image point correspondences is a vital task in most
view based SLAM and robot navigation approaches. In order to
improve the robustness to noise and false point correspondences
it is common to incorporate the constraint that the robot moves
over a planar surface, as is the case for most indoor and outdoor
mapping applications. We propose a novel estimation method
that determines the full likelihood in the space of all possible
planar relative poses. The likelihood function can be learned
from existing data using standard Bayesian methods and is
efficiently stored in a low dimensional look up table. Estimating
the likelihood of a new pose given a set of correspondences
boils down to a simple look up. As a result, the proposed
method allows for very efficient creation of pose constraints for
vision based SLAM applications, including a proper estimate
of its uncertainty. It can handle ambiguous image data, such
as acquired in long corridors, naturally. The method can be
trained using either artificial or real data, and is applied on
both controlled simulated data and challenging images taken in
real home environments. By computing the maximum likelihood
estimate we can compare our approach with state of the art
estimators based on a combination of RANSAC and iterative
reweighted least squares and show a significant increase in both
the efficiency and accuracy.

I. INTRODUCTION

Various vision based topological mapping [1, 2], geomet-

rical mapping [3, 4] and robot navigation [5] approaches are

based on the ability to compare pairs of images. A common

way to do this is to automatically find similar looking image

points [6], as done for two panoramic images in Figure 1. Be-

cause part of these point correspondences are the projections

of the same 3D landmarks in the environment, they can be

used to determine the relative camera pose up to an unknown

scale [7]. A major challenge in determining the relative pose

given point correspondences, is that a large percentage does

not correspond to the same 3D landmark, but are so called

mismatches. In addition the image point locations of correct

matches are noisy, caused by for example noise of the imaging

device and errors in the calibration.

To cope with this, so called robust algorithms are needed.

There are three robust methods commonly used: RANSAC [8],

M-Estimators [9] and the Hough Transform [10]. State of the

art relative pose estimators first use RANSAC(RANdom SAm-

ple Consensus) [8] combined with the closed form Eight [11]

or Five point algorithm [12] for an initial estimate and then ap-

ply robust iterative reweighted least squares (IRLS) techniques

such as M-Estimators (Maximum likelihood Estimators) [9] in

combination with the Eight point algorithm [11] to improve it.
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Fig. 1. An example. Applying standard SIFT matching on two panoramic
images resulted in only four point correspondences including 2 mismatches
and 2 almost degenerate correct matches. Still, the proposed method computes
a full likelihood over the different possible relative robot poses, and the
maximum likelihood (solid blue circle) is close to the ground truth (dashed
red circle). The numbers relate the different correspondences in the image
pair with the curves in the solution space.

Both RANSAC and the M-Estimator try to find a maximum

likelihood solution by first rejecting mismatches and too

noisy correspondences using an error threshold and base a

least square solution on the remaining matches. Sophisticated

techniques in Computer Vision try to determine this threshold

from the image data itself [13, 14]. In the field of Robotics,

where characteristics of the camera are available, this threshold

is usually determined through some calibration procedure. The

Hough Transform on the other hand, if seen probabilistically,

computes the full likelihood on a discrete grid of poses.

Because space requirements grow exponential with the number

of parameters, it is in general not suited for pose estimation

problems, although combinations of the Hough Transform

with RANSAC [15] do exist, as well as methods that treat



rotation and translation estimation separately [16, 17].

An approach to make pose estimation easier is to incor-

porate constraints on the possible relative poses. If the robot

drives over a planar surface, then the camera can only rotate

around a certain fixed axis which is perpendicular to the two

dimensional translation direction. Given that the scale can not

be determined, the number of degrees of freedom for this

planar relative pose problem reduces to two. This constraint

can be used to improve indoor mapping application using

wheeled robots [5], but also vision based outdoor mapping

using vehicles driving over planar roads [1, 18, 19].

Commonly this constraint is imposed rather heuristically,

for example by taking only the horizontal displacement of

image points into account [20, 4, 19]. A more proper solution

is proposed by Brooks [21] which formulates a least square

approach to the planar relative pose given noise free correspon-

dences. This result was used in [22, 23, 2] for various robotics

applications all in combination with RANSAC to make it

robust against noise and mismatches. In [22, 24] it was shown

that two correspondences are enough to solve the problem

and both suggest algorithms, which are briefly evaluated in

combination with RANSAC.

For practical reasons RANSAC based algorithms are used

to randomly sample the solution space for many estimation

problems. Discretizing and analyzing the whole solution space

potentially leads to much more robust results. In this paper

we show that this is feasible for the planar motion estimation

case without the additional approximations as in [16, 17]. To

the best of our knowledge this is the first time a Hough-like

approach is directly used for motion estimation from images.

Our results demonstrate the greatly increased robustness over

the random sampling techniques. Furthermore, we present a

probabilistic representation where we learn the needed condi-

tional distributions from real or simulated data without any pa-

rameters, except the size of the discretization grid. This allows

fast tuning of the approach for different robots and cameras

since most standard approaches have a set of parameters that

need to be tuned [4, 3]. Additionally, the learned conditional

distributions properly capture other sources of uncertainty

that are difficult to explicitly account for, e.g. shaking of

the robot and inaccurate camera calibration. Therefore, more

accurate and robust results are obtained as demonstrated in the

experimental section. Finally, testing the whole solution space

potentially can be computationally expensive. We present

an efficient implementation using a precomputed LUT. The

geometry of the problem is analyzed and a parameterization

is proposed to reduce the dimensionality of the needed LUT to

only three dimensions. The experimental results show that the

whole scheme can be even faster than the common sampling

based approach while at the same time we get more robust

and accurate results.

The rest of the paper is organized as follows. First, in

Section II we formalize the planar relative pose problem and

describe how noise free correspondences relate to it. This

relation is used in Section III to derive the novel estimator

and how it can be trained using real image data. In Section IV
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Fig. 2. 3D visualization of two cameras, L and R, positioned on the
same plane both observing a landmark F . The dashed circle on the ground
plane indicates the possible positions for robot R given the pose of L and
observations of F .

we apply it on both simulated data and image data-sets taken

in both an office and real home environments and compare

the Maximum Likelihood estimates with the results from a

planary constrained RANSAC combined with an M-Estimator.

In Section V we discuss the qualitative advantage of having

a full likelihood solution and propose some directions for

improvement. Finally, in Section VI, conclusions are drawn.

II. RELATING CORRESPONDENCES TO POSES

The planar relative pose, which can be seen as a 2D

translation and rotation, minus scale, can be parameterized

in different ways. We choose to parameterize it using two

angles ϑ and φ, see Figure 2. Angle ϑ denotes the direction

of the translation, or heading, of robot R in the coordinate

frame of robot L and angle φ denotes the heading of robot

L in the coordinate frame of robot R. Another common

parameterizations is using the heading and the rotation of robot

R in the frame of robot L, such as in [21, 22]. However, our

parameterization reflects the symmetry of the problem.

It is, for now, assumed that image point correspondences

are obtained by a noise free projection of landmarks, without

mismatches. An image point is usually denoted by a 3D vector

of unit length x = [x, y, z]′, where the z-axis is pointing in

the direction of the camera axis and the y-axis is in the planar

case perpendicular to the ground plane. Here we denote an

image point by its horizontal angle β = atan2(z, x) and its

vertical angle α = arcsin(y). This is similar to the azimuth

and elevation used in the inverse depth parameterization by

landmark based SLAM methods [25]. If two robots L and

R observe a landmark F , the point correspondence is thus

denoted by αL, βL and αR, βR.

The 3D problem as shown in Figure 2 can be reduced to a

simpler 2D problem, by projecting F on the plane getting F ′.

We define dL and dR as the distances of L to F ′ and R to F ′

respectively. The length of F to F ′ can now be expressed by:

FF ′ =
tan(αL)

dL

=
tan(αR)

dR

, (1)
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Fig. 3. Visualization of the possible relative robot poses by plotting φ as a
function of ϑ for multiple correspondences randomly picked using a relative
pose with ϑ = φ = 0. (a) Generated using 5 noise free correspondences. (b)
Generated using 5 noisy correspondences and 3 mismatches (dashed curves).
Note that, by coincidence, one of the mismatches corresponds to a curve close
to the actual pose.

which results in the following ratio r of dL and dR:

r =
dL

dR

=
tan(αR)

tan(αL)
. (2)

Angle 6 F ′RL can then be found using the Law of Sines:

sin(6 F ′RL)

dL

=
sin(βL − ϑ)

dR

,

6 F ′RL = arcsin

(

dL

dR

sin(βL − ϑ)

)

. (3)

Angle φ can now be expressed as a function of angle ϑ
and a single point correspondence by adding the horizontal

observation angle βR, and using Equation (2):

φ = βR + arcsin

(

tan(αR)

tan(αL)
sin(βL − ϑ)

)

. (4)

We could also rewrite this formula into:

ϑ = βL + arcsin

(

tan(αL)

tan(αR)
sin(βR − φ)

)

, (5)

which is evident given the symmetry between ϑ and φ.

We now obtained functions that map ϑ to φ and vice versa

given a single point correspondence. Figure 3(a) shows curves

of possible relative robot poses generated using Equation 4

given some randomly picked point correspondences. Looking

closely at this figure one can see that some pairs of curves

intersect each other twice. This shows that, although it was

assumed that two point correspondences can be used to solve

the relative pose problem [22, 24], in some cases two different

relative robot poses result in the same two point correspon-

dences. Based on Equation 4 an algorithm was derived that

computes both these solutions given two correspondences,

which can be combined with hypothesize and test schemes

such as RANSAC. This “Planar two point algorithm” is rather

tedious and left out of this paper, but for completeness it is

taken into account in the experiments.

III. FULL LIKELIHOOD ESTIMATOR

We now use the relation between noise free correspondences

and relative poses to develop an algorithm that can deal with

noisy correspondences, including mismatches, see Figure 3(b).

The problem can be formulated as determining the negative

log likelihood of each pose (ϑ, φ) given n point correspon-

dences {ξ1, . . . , ξn}, each parameterized by the angles ξi =
(αLi, βLi, αRi, βRi) [26]:

L(ϑ, φ) =
∑

i

Li(ϑ, φ) (6)

=
∑

i

− log p(ξi|ϑ, φ), (7)

where Li(ϑ, φ) = − log p(ξi|ϑ, φ) is the contribution of each

point correspondence to the 2D log likelihood function. The

2D solution space is discretized into a 2D histogram. For each

bin we need to sum the contribution of all point matches.

Therefore for each point match we need to calculate the

corresponding 2D histogram approximating its log likelihood

contribution Li(ϑ, φ). This is computational costly, and we

show next how this can be efficiently performed using a

precomputed look-up table to approximate the logarithm of

the conditional probability Li(ϑ, φ) = − log p(ξi|ϑ, φ).

A. Look up table

The negative log likelihood of a single correspondence ξ
is given by − log p(αL, βL, αR, βR|ϑ, φ). Thus, if we would

naively construct such a look up table, it would have 6

dimensions, 4 for the point correspondence angles and 2

for the relative pose. In order to keep the size of the LUT

comprehensible, the 6D space should be discretized in large

bins, resulting in a large discretization error. Fortunately, the

dimensionality of the LUT can be reduced to only 3 dimen-

sions by using the one point mapping function introduced in

Section II and some common assumptions about the noise

characteristics of image points.

The one point mapping function given in Equation (4) can

be written as

φ − βR + arcsin

(

tan(αR)

tan(αL)
sin(ϑ − βL)

)

= 0. (8)

As can be seen the terms αL and αR are only used in the

combination
tan(αL)
tan(αR) . Also, variables ϑ and βL, and variables

φ and βR are only used in the combinations ϑ − βL and

φ − βR respectively, which describe the horizontal angles

to the landmark relative to the heading of the cameras. The

joint probability of observing a correspondence under a certain

relative pose can thus be represented as:

p(αL, βL, αR, βR, ϑ, φ) = p

(

tan(αL)

tan(αR)
, ϑ − βL, φ − βR

)

.

(9)

This holds if we assume that the noise on of the horizontal and

vertical view angles do not depend on their value, which is

similar to the common assumption that the noise of the pixel

locations is homogeneous.

Because of the symmetry of the representation of the relative

planar pose, the two points of the point correspondences and

the heading angles can be swapped giving the same result:

p (r, ϑ − βL, φ − βR) = p

(

1

r
, φ − βR, ϑ − βL

)

, (10)



where we introduced r = tan(αL)
tan(αR) for convenience. In practice

this means that we only have to construct a LUT for 0 < r < 1
and swap ϑ−βL with φ−βR and use 1

r
instead of r if r > 1.

The likelihood can be determined from the joint probability

by dividing by the probability of the pose p(ϑ, φ):

p(ξ|ϑ, φ) = p(αL, βL, αR, βR|ϑ, φ) (11)

= p(αL, βL, αR, βR, ϑ, φ)/p(ϑ, φ) (12)

= p

(

tan(αLi)

tan(αRi)
, ϑ − βLi, φ − βRi

)

/p(ϑ, φ).(13)

Usually, during the construction the LUT, one takes care that

the different relative poses are uniformly distributed, making

the likelihood proportional to the joint:

p(ξ|ϑ, φ) ∝ p

(

tan(αL)

tan(αR)
, ϑ − βL, φ − βR

)

. (14)

Efficiently determining a full likelihood over the relative

poses given a set of correspondences is now straightforward.

For each correspondence ξi we compute the value of
tan(αLi)
tan(αRi)

and pick the corresponding 2D slice of the look up table. Then

we shift it in the direction of βLi and βRi, wrapping the values

at the borders. This results in the negative log likelihood of

each pose given a correspondence, which can be summed for

the different correspondences, resulting in a full likelihood.

B. Learning the conditional probability

The LUT representing the negative log likelihood can be

constructed from existing data. This data can be generated

by a simulator modeling the planar pose problem including

a vision system. Better is to use a representative image set

for which ground truth robot pose data is available. The main

problem of real data is that the relative poses are in general

not uniformly distributed. This invalidates the simplification

proposed in Equation (14) and results in a bias of the LUT

towards certain poses which are overrepresented in the dataset.

However, we can easily compensate for this problem.

When constructing the LUT, we explicitly take the proba-

bility of the relative pose into account (see Equation (13)). In a

first step, a 2D discretized probability p(ϑ, φ) is constructed by

making a histogram for all poses in the dataset and normalizing

it. Then, in a second step, the dataset is used to build the

3D LUT like for the simulator, with the difference that for

each pose correspondence it adds 1
p(ϑ,φ) to the 3D histogram.

Again, each value of the histogram is replaced by its negative

log, resulting in a proper LUT.

A second problem, which can not be circumvented, is that

the amount of data in an image dataset is limited. As a

consequence we usually can not construct a LUT with a very

high number of bins. In the next section we evaluate, among

other things, the consequences of such a smaller LUT.

IV. EXPERIMENTS

By determining the Maximum Likelihood from the esti-

mated full likelihood, we can compare our method for planar

relative pose estimation with the state of the art robust methods

using RANSAC combined with an M-Estimator as described

briefly in Section I. We combined these with the Planar two

point, the Planar Three point and the general Eight point

algorithm. We used simulated data and 4 datasets obtained

from a robot with an omnidirectional vision system. The

methods are compared on the basis of their robustness against

mismatches and noise.

We evaluate the estimated heading and rotation angle as

in [27] by taking the absolute difference with the ground truth

values. Because these errors are not normally distributed we

use the median to describe the error distribution. A robust way

to describe the spread of these medians is to use the Median

of Absolute Deviations (MAD). Another important evaluation

criterion is the computational time used by the algorithms. For

all experiments we report these times, as implemented in C++

and run on the single 2 Ghz CPU core of a Pentium PC.

A. Experiments on simulated data

Using simulated data allows us to control the projection

noise and number of mismatches. Also, it allows us to deter-

mine the percentage of correctly found mismatches.

1) Data: Data was simulated by randomly picking a uni-

formly distributed point cloud of 3D landmarks inside a sphere

of size 2 around the origin. Two random camera poses on

a circle with radius 1 in the x-y plane around the origin

are chosen. From these the ground truth values for ϑ and

φ are determined. Note that the distribution of ϑ and φ is

approximately uniform.

A set of point correspondences is constructed by projecting

the landmarks on a spherical shaped image surface with a

radius of 1 around the camera pose. Thus, an ideal omnidirec-

tional camera model is used with a full 360 degrees view angle

in the horizontal and vertical direction. An amount of normally

distributed noise with zero mean and standard deviation 0.01
is added to these projections. This value corresponds to an

angular error of approximately .57 degrees, which corresponds

to about 6 pixels for a typical conventional mega pixel camera

with a focal length of 8 mm. This amount of projection noise

seems quite large. However, it also accounts for the simplifi-

cations of the camera model, the calibration errors and errors

of the image key point extractors. In addition, mismatches are

added by creating false correspondences between projections

of different landmarks. We use a mismatch rate of 90%.

2) Setup: A LUT was constructed using the same simulator

Section III-B. The number of bins to represent φ, ϑ and r were

all 128, which caused the computational time to be comparable

with that of the RANSAC+M-Estimator combined with the the

3-point algorithm. The number of point correspondences used

was 1010, which took 3 hours to build. The error threshold

for both RANSAC and the M-Estimator were set according to

the projection noise of the simulator.

3) Resulting Look up table: Figure 4 shows the resulting

look up table. In (a) one can see that point correspondences

with a r value close to zero, do not tell that much about the

data. This is due to the fact that there is a high chance that it

resulted from a mismatch. Note also that the histogram corre-

sponding to a r value close to 1 in (f) is almost symmetric.
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Fig. 4. Look up table obtained from simulated data as denoted in Section III-
B, which was also used throughout the experiments.
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Fig. 5. Comparison of the RANSAC+M-Estimator combined with the 3-
point algorithm and the proposed LUT ML method for 90% mismatches. The
distribution of rotation errors shows a similar pattern.

Indeed if r is exactly 1 then r = 1
r

and we could swap φ and

θ.

4) Resulting distributions: The distribution of errors is

given in Figure 5. The LUT ML method results is superior

for 90% percent mismatches. Also it is clearly visible that

both distributions have long tails.

5) Sensitivity to mismatches: To test the robustness of the

different methods to mismatches, we vary the number of

mismatches, from 50% to 99%. In total 105 iterations were

conducted. In Figures 6(a) and 6(d) the resulting estimation

errors are plotted.

Both the heading and rotation results show the same trend.

The error of the RANSAC+M-Estimator with the 8-point

algorithm, which does not take planarity into account, in-

creases fast if more than half of the correspondences are

mismatches. The RANSAC+M-Estimator with the 2-point and

3-point algorithm behave similarly and start diverging at 65%

mismatches. Note that the 3-point version is always slightly

better than the 2-point version. The accuracy of the LUT based

ML estimator, on the other hand, does not seem to influenced

by high mismatch rates.

B. Experiments on real data

We compared the performance of our method with other

methods on more than 3 ∗ 106.

1) Data: We used four distinct image datasets. The first

three were obtained using our Nomad Super Scout II and the

fourth by the ’Biron’ robot from the University of Bielefeld.

On both an omnidirectional vision system was mounted con-

sisting of a conventional Firewire camera pointing pointing

upwards to a hyperbolic mirror. The ’Office’ set was taken

in a typical office environment. All other sets are taken in

real home environments. In the ’Almere 4’ set there are some

people walking in the room, the ’Spaan 1’ set is taken during

evening hours, and the ’Biron 1’ set is taken in a feature poor

home. The ground truth robot poses for the home sets were

obtained by applying the SLAM algorithm described in [28]

on the laser scans and odometry. For the ’Office’ set they were

obtained by positioning the robot by hand using a small laser

beam for accurate orientation.

2) Setup: From every dataset we use every pair of images.

We discard the images taken at the same position. Also, if

images are taken at more than 5 meters apart for the Almere

4 or more than 3 meters apart for the other sets, then the

chance of finding point correspondences is small, so we also

discard these pairs. Still, for each set there are around 106

image pairs left.

To extract point correspondences from the image pairs,

the SIFT algorithm is used [6]. First omnidirectional images

are mapped to panoramic images [30], from which the SIFT

feature points are found. These features are described by the

standard SIFT descriptor of 128 dimensions. If two features in

the same image have a small distance in descriptor space then

they are removed. A set of point correspondences between

two images is determined by applying the standard matching

scheme as described in [6]. This resulted in on average 25

matches per image pair. The groundtruth relative pose was

computed from the groundtruth robot positions.

3) Sensitivity to mismatches, trained with simulated data:

We first use a LUT constructed using the simulator described

in Section IV-A.1 and see how well it compares to state of

the art methods. In order to evaluate the performance of the

methods we would like to vary the number of mismatches.

This can not be controlled in real data, therefore we made

subsets of the data on the basis of the distance between the

poses. We assume that for larger distances it is more difficult

to find matching features. In Figure 6(b) and 6(e) the heading

and rotation error of the different methods is plot as a function

of the distance between the images for dataset ’Almere 4’. It

is clear that on a whole the errors are much larger than was

the case for the simulation data. This is partly due to the fact

that some of the views were obstructed by furniture, walls or

people walking in the environment.

In the plot of the heading error (Figure 6(b)) one can

see that the RANSAC+M-Estimator combined with the Two

point algorithm is outperformed by the Three point algorithm

version, which in turn is clearly outperformed by the novel

LUT method for distances larger than 1.5 meters. The accuracy

of the RANSAC+M-Estimator combined with the Eight point

algorithm is not that bad. This could have been caused by

the fact that the robot was leaning over when accelerating,

slightly violating the planarity constraint. For the rotation error

(Figure 6(e)), the improvement of the ML estimator over the
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Fig. 6. Comparison of LUT ML, trained using a simulator or real images and RANSAC+M-Estimator combined with different algorithms on the simulation
dataset for different number of mismatches and Almere set 4 and Spaan 1 for different distances between the image pairs. The MAD is used to draw confidence
intervals of the medians.

RANSAC+M-Estimator with Three Point is less clear.

4) Sensitivity to mismatches, trained with real data: Next

we constructed a look up table using all the image pairs of the

Almere 4 set that were within a 5 meter distance and applied

it on the Spaan 1 set. We used two different binsizes, the

first had 128 bins for all three dimensions and the other 16.

The Maximum Likelihood solutions based on these two tables

were compared to the RANSAC+M-Estimator combined with

the Three point algorithm and solutions given two LUTs based

on the simulator, also with dimensions 128 and 16.

In Figure 6(c) and 6(f) the results are shown. As can be seen

the overall accuracy is less than for the Almere 4. A reason for

this could be the motion blur, caused by the bad illumination

of this dataset. The LUT ML with 128 bins based the simulator

perform best, followed by the 128 bins LUT based on the real

images. Probably this is due to the limited number of point

correspondences in the real image set. For the much smaller

LUTs with 16 bins this seems to be less problematic, visible

by the improvement of the LUT based on real images over

the one based on simulated data.

5) Averages over the data sets: Application on other

datasets resulted in comparable errors. Table I summarizes

these results.

6) Binsize vs CPU time: To evaluate the influence of

different binsizes for the look up table, we tested the ML

method for different numbers of bins. In Table II the average

computational time in milliseconds is given per image pair for

the ’Almere 4’ set (other datasets showed similar trends). As

TABLE II

AVERAGE COMPUTATIONAL TIME USAGE PER RELATIVE POSE ESTIMATE

IN MILLISECONDS FOR THE DIFFERENT METHODS.

ML RANS+M-Est

128 64 32 16 8pt 3pt 2pt

1.3 0.28 0.07 0.036 3.6 3.8 0.68

can be seen small look up tables result in a large speed up,

but this comes at the cost of more error (see Table I). The

RANSAC+M-Estimator combined with the Planar three point

algorithm is three times slower than the LUT method with

1283 bins.

V. DISCUSSION

An important advantage of the LUT based pose estimator

is that it provides a full likelihood over the descritized space

of possible relative poses. Thus, appart from computing a

Maximum Likelihood solution, as shown in the Experiments

section, this could make the method useful for a range of other

applications.

A nice illustration of the usefulness of a full likelihood

can be seen in Figure 7. It shows an example likelihood

for a typical situation that occurred in the Almere 4 set. In

this case the robot did not move forward but rotated on the

spot. Thus the heading of the translation of the robot, ϑ, is

not determined. This is correctly reflected by the estimated



TABLE I

PERFORMANCE OF THE TESTED POSE ESTIMATION METHODS FOR THE DIFFERENT DATA SETS

Office Almere 4 Spaan 1 Biron 1

LUT ML sim head err 0.022 ( .0026 ) 0.548 ( .0031 ) 0.538 ( .0027 ) 0.813 ( .0063 )

128 rot err 0.000 ( .0000 ) 0.399 ( .0017 ) 0.469 ( .0063 ) 0.578 ( .0029 )

LUT ML sim head err 0.000 ( .0000 ) 0.597 ( .0025 ) 0.585 ( .0071 ) 0.850 ( .0025 )

64 rot err 0.000 ( .0000 ) 0.425 ( .0044 ) 0.499 ( .0029 ) 0.602 ( .0039 )

LUT ML sim head err 0.000 ( .0000 ) 0.669 ( .0030 ) 0.664 ( .0026 ) 0.912 ( .0031 )

32 rot err 0.000 ( .0000 ) 0.459 ( .0027 ) 0.537 ( .0019 ) 0.627 ( .0030 )

LUT ML sim head err 0.071 ( .0000 ) 0.786 ( .0027 ) 0.771 ( .0054 ) 0.975 ( .0041 )

16 rot err 0.000 ( .0000 ) 0.503 ( .0013 ) 0.585 ( .0040 ) 0.660 ( .0049 )

LUT ML real head err 0.049 ( .0000 ) 0.711 ( .0035 ) 0.612 ( .0059 ) 0.843 ( .0031 )

128 rot err 0.000 ( .0000 ) 0.401 ( .0006 ) 0.449 ( .0026 ) 0.502 ( .0034 )

LUT ML real head err 0.027 ( .0000 ) 0.717 ( .0016 ) 0.616 ( .0037 ) 0.844 ( .0046 )

64 rot err 0.000 ( .0000 ) 0.402 ( .0011 ) 0.451 ( .0058 ) 0.492 ( .0047 )

LUT ML real head err 0.000 ( .0177 ) 0.730 ( .0036 ) 0.630 ( .0060 ) 0.857 ( .0032 )

32 rot err 0.000 ( .0000 ) 0.410 ( .0031 ) 0.469 ( .0063 ) 0.500 ( .0041 )

LUT ML real head err 0.071 ( .0177 ) 0.766 ( .0045 ) 0.684 ( .0063 ) 0.881 ( .0028 )

16 rot err 0.000 ( .0000 ) 0.433 ( .0021 ) 0.503 ( .0032 ) 0.529 ( .0020 )

R+M 8pt
head err 0.031 ( .0015 ) 0.957 ( .0043 ) 0.925 ( .0053 ) 1.244 ( .0069 )

rot err 0.008 ( .0013 ) 1.220 ( .0027 ) 1.212 ( .0026 ) 1.389 ( .0100 )

R+M 3pt
head err 0.028 ( .0017 ) 0.677 ( .0035 ) 0.585 ( .0068 ) 1.101 ( .0288 )

rot err 0.007 ( .0010 ) 0.430 ( .0032 ) 0.512 ( .0051 ) 1.068 ( .0089 )

R+M 2pt
head err 0.040 ( .0034 ) 0.903 ( .0034 ) 0.778 ( .0062 ) 1.371 ( .0197 )

rot err 0.012 ( .0014 ) 0.563 ( .0041 ) 0.619 ( .0049 ) 1.038 ( .0181 )
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Fig. 7. The log posterior computed from the point correspondences between
image 857 and 897 of Almere set 4. The distance between these camera
positions was about 1 cm, while the rotation was 90 degrees.

posterior. The rotation, on the other hand, can be determined.

This can be seen by the diagonal relationship between ϑ and

φ in the posterior.

The proposed method could be readably applied in particle

filter based robotA localization schemes [31] where each

hypothesized robot pose can be weighted by the likelihood

given newly acquired images. Also, geometric SLAM could

benefit from the proposed method, because the uncertainty of

the Maximum Likelihood can be estimated easily from the

full likelihood. For example by fitting a Von Mises or mix-

ture of Von Mises distributions on the descritized likelihood

space [26].

Another task that is very much suited for the proposed

example is that of topological mapping. State of the art

topological mapping approaches use proper probabilistic data

association techniques to compare pairs of images [1]. How-

ever, in addition they commonly apply ad hoc rules to check

whether the matched point correspondence fit in a certain local

geometry, by computing the relative pose. Because of the prob-

abilistic nature of the proposed method, it is straightforward

to combine it with these proper data association techniques,

ending up in a fully probabilistic topological mapping method.

VI. CONCLUSION

In this paper we propose a novel approach to solve planar

relative pose estimation from image point correspondences.

We have shown the advantage of discretizing and analyzing

the complete solution space, which is in the planar motion

case 2 dimensional. Probabilistic methods were proposed that

learn the likelihood over this space from a training set of

representative images. Experiments on challenging image sets

acquired in real homes showed a 20% increase in accuracy

with respect to state of the art methods consisting of a planar

constrained RANSAC and M-Estimators.

In addition an efficient technique was presented for building

a concise look up table of the likelihood, reducing the estima-



tion process to simple look ups. Computing a full likelihood

given two images costs as little as 36 microsecond, as com-

pared to the 3 milliseconds RANSAC uses. This could even

be improved upon, for example, by using a multi-resolution

approach as described in [32], in which a small look up table is

used to isolate candidate areas for the ML solution, which are

then investigated further using a bigger look up table. Another

possibility is implementing the method on a GPU, which can

much more quickly manipulate 2D histograms.

Continuing research will focus on taking advantage of the

full likelihood that is estimated by the method. We foresee

improvements in both geometric SLAM as in topological

mapping, especially when it comes to uncertainty estimation.
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[29] Z. Zivkovic, O. Booij, B. Kröse, E.Topp, and H.I.Christensen, “From
sensors to human spatial concepts: an annotated dataset,” IEEE Trans-

actions on Robotics, vol. 24, no. 2, pp. 501–505, April 2008.
[30] R. Bunschoten, “Mapping and localization from a panoramic vision

sensor,” Ph.D. dissertation, University of Amsterdam, November 2003.
[31] H.-M. Gross and A. Koenig, “Robust omniview-based probabilistic self-

localization for mobile robots in large maze-like environments.” in ICPR

(3), 2004, pp. 266–269.
[32] E. B. Olson, “Real-time correlative scan matching,” in ICRA. Kobe,

Japan: IEEE, May 2009.


